
BTnode Programming
— An Introduction to BTnut Applications

Number 1.4

Jan Beutel, Philipp Blum, Matthias Dyer
Clemens Moser, Mustafa Yücel, Philipp Stadelmann

Computer Engineering and Networks Laboratory
ETH Zurich

8092 Zurich, Switzerland
{beutel,blum,dyer,moser,yuecel}@tik.ee.ethz.ch

with contributions of

Marc Langheinrich, Jonas Wolf
Institute for Pervasive Computing

ETH Zurich
8092 Zurich, Switzerland

{langhein,wolfj}@inf.ethz.ch

The BTnode Project
November 19, 2006

ii

CONTENTS iii

Contents

1 Introduction 1

1.1 The BTnodes and the BTnut System Software . 1

1.2 Intended Audience . 2

1.3 Hard- and Software Requirements . 2

1.4 Reference Documents . 3

2 First Steps in BTnode Programming 5

2.1 Introduction . 5

2.2 Development Tools . 5

2.2.1 Compilation . 5

2.2.2 Simulation and Debugging . 6

2.2.3 Project Management . 6

2.2.4 Embedded Target Connection . 6

2.2.5 Documentation Tools . 6

2.3 Notes on the BTnode Hardware Architecture . 7

2.4 BTnut System Software Resources . 9

2.5 First steps in BTnode programming – Using the avr-gcc toolchain 12

3 Device-Level Programming 19

3.1 Introduction . 19

3.2 Off-chip resource: Setting and Clearing LEDs . 19

3.3 On-chip resource: The Analog to Digital Converter . 21

3.4 Writing interrupt routines: Hardware Timers . 22

3.5 Protecting shared data and resources . 23

4 Programming with Threads 27

4.1 Introduction . 27

4.2 Creating Threads . 27

4.3 The Terminal . 30

4.4 Events . 32

5 Embedded Debugging 33

5.1 Introduction . 33

iv CONTENTS

5.2 Tools . 33

5.2.1 Debugging techniques for the BTnode . 34

5.3 AVR Simulation . 35

5.4 The OS-Tracer . 36

6 Communication Using Bluetooth 41

6.1 Introduction . 41

6.2 Discovery of Bluetooth devices . 41

6.3 Creating Connections and Sending Data Packets . 45

7 Interfacing to Handheld Devices 49

7.1 Introduction . 49

7.2 RFCOMM . 49

7.3 AT Commands . 52

7.4 Sending an SMS Message using AT Commands . 55

A Software Versions Used 59

B Solutions 61

Date Section Who Changes

Mar 2, 2005 jb Initial Version 0.1
Mar 24, 2005 2, 3 jb, pb Initial drafts of 2st and 2nd exercise done
Mar 30, 2005 3 jb Added input from beta-testers, ready for distribution
May 10, 2005 1, 6 jb, cm Edits after Clemens first import, added BTnode developer kit to introduction
May 12, 2005 all jb,cm,md Fixed graphics and rest of 5 and 6, prep for first release
Mar 21, 2006 1 jb Minor updates
Mar 24, 2006 1,2,appendix jb Finished chapter 1 and 2 draft for SS2006
Apr 5, 2006 2 jw Added bootloader
Apr 5, 2006 1,2,4,appendix jb Minor changes to chapter 2. Checked all solutions and moved some files around
Apr 6, 2006 1 ml Added Marc’s superb introduction modification
Apr 19, 2006 2 jb Replaced 115200 by 57600 (default baudrate)
May 29, 2006 6 jb,cm Bluetooth updates for 2006, created version 1.3
Nov 13, 2006 7 my Added chapter 7

Table 1: Revision History

1

Chapter 1

Introduction

1.1 The BTnodes and the BTnut System Software

Figure 1.1: The BTnode rev3.

The BTnode is an autonomous wireless communication and computing platform based on a Bluetooth radio
and a microcontroller. It serves as a demonstration platform for research in mobile and ad-hoc connected net-
works (MANETs) and distributed sensor networks. The BTnode has been jointly developed at ETH Zurich
by the Computer Engineering and Networks Laboratory (TIK) and the Research Group for Distributed
Systems. Currently, the BTnode is primarily used in the NCCR-MICS research projects1

In addition to its Bluetooth radio, the latest BTnode revision (rev3) also features a low-power radio iden-
tical to the one used on the Berkeley Mica2 Motes2, allowing it to interact with both Mica2-based nodes
and previous, Bluetooth-only revisions of the BTnode. Both radios can be operated simultaneously or be
independently powered off completely when not in use, considerably reducing the idle power consumption of
the device.

BTnodes run an embedded systems OS from the open source domain, called Nut/OS3 Nut/OS is designed for
the Atmel ATmega128 microcontroller (which is used on the BTnodes) and intentionally kept very simple.
According to the Nut/OS homepage, it features:

• Non preemptive cooperative multi-threading

• Events

• Periodic and one-shot timers
1See www.mics.org.
2See www.xbow.com/Products/Product pdf files/Wireless pdf/6020-0042-05 A MICA2.pdf.
3See www.ethernut.de/en/software.html.

www.mics.org
www.xbow.com/ Products/ Product_pdf_files/ Wireless_pdf/ 6020-0042-05_A_MICA2.pdf
www.ethernut.de/ en/ software.html

2 CHAPTER 1. INTRODUCTION

• Dynamic heap memory allocation

• Interrupt driven streaming I/O

In order to use Nut/OS on the BTnodes, a set of BTnode-specific drivers have been added, and in particular
a Bluetooth stack for its on-board Bluetooth radio. These three pieces form together the BTnut system
software.

In this tutorial, we will learn how to use the BTnut system software to deploy sensor node applications on
the BTnode wireless sensor node platform.

1.2 Intended Audience

This tutorial originated in the Embedded Systems lecture, a graduate course taught at the Department
of Information Technology and Electrical Engineering, ETH Zurich. It requires basic knowledge of C-
programming and embedded systems and should give an overview of the capabilities of networked embedded
systems and their key properties. However, apart from its usage in the lecture, this tutorial provides a basic
introduction to programming on the BTnode platform, so it should also be beneficial to the occassional
computer scientist not versed in all things electrical.

Each chapter comes with a set of exercises that are supposed to get you accustomed to basic, everyday tasks
of an embedded engineer. The order in which the exercises are performed is not of crucial importance, and
whole chapters can be left out to suit the individual needs (e.g., computer scientists might want to skip
those concerning hardware issues). However, we suggest that you perform the exercises in the order given
to minimize unforeseen complications.

1.3 Hard- and Software Requirements

Figure 1.2: The BTnode development kit. The minimal set of tools consists of the three items on the very
right: a BTnode, a USB programming board, and a USB cable. Additionally, some exercises require the use
of an ISP programmer, a serial cable, and a 15-Pin Molex breakout cable (left half).

To be able to do all of the practical exercises in this tutorial, you will need a complete BTnode developer kit
(see Figure 1.2) consisting of: a BTnode rev3; a usbprog USB programming adapter; an ISP programmer (we

1.4. REFERENCE DOCUMENTS 3

suggest the Atmel ATAVRISP or alternatively the ATAVRISP MK2 programmer); serial and USB cables; a
15-Pin Molex breakout cable; and the software, documentation and tools contained on the BTnode CDROM
(see Figure 1.3). However, a number of exercises can also be performed with a minimal subset of these tools,
namely a BTnode, the USB programming adapter, and a USB cable.

For a complete listing of software tools and their versions used in this tutorial, please see appendix A. The
tutorial assumes that the necessary development tools (avr-gcc toolchain, avr-libc, an ISP programming
utility if you use the ISP programmer, eclipse and CDT) are installed and working correctly. For details
on the installation and configuration of the development tools see the BTnode online resources available at
www.btnode.ethz.ch.

Figure 1.3: The BTnode CDROM.

1.4 Reference Documents

Should you ever need more information than what is given here in this tutorial, feel free to browse the
following sites for details on the individual pieces of the puzzle:

• The BTnode platform reference – with support documents, installation instructions for the devel-
opment tools and source software, mailing lists and various links.

www.btnode.ethz.ch

• The home of Nut/OS – the BTnut operating system core.

www.ethernut.de

• Open source development tools for the AVR platform

www.openavr.com

• Open source tools for the development on Atmel AVR, Windows platform installer

winavr.sourceforge.net

• Atmel AVR product family

www.atmel.com/products/avr

• Atmel AVR related developer information – application notes, links and tools.

www.avrfreaks.net

• A nice avr-gcc tutorial (in german)

www.mikrocontroller.net/wiki/AVR-GCC-Tutorial

www.btnode.ethz.ch
www.btnode.ethz.ch
www.ethernut.de
www.openavr.com
winavr.sourceforge.net
www.atmel.com/products/avr
www.avrfreaks.net
www.mikrocontroller.net/wiki/AVR-GCC-Tutorial

4 CHAPTER 1. INTRODUCTION

• Bluetooth Special Interest Group – all about the standardization, applications and reference
documents.

www.bluetooth.org

• Technical BTnode/BTnut support – For technical questions concerning BTnut and the BTnode
platform please inquire to the mailing list:

mailto:btnode-development@list.ee.ethz.ch

www.bluetooth.org
mailto:btnode-development@list.ee.ethz.ch

5

Chapter 2

First Steps in BTnode Programming

2.1 Introduction

In this chapter, we will step you through the basic knowledge about development tools, software structure
and reference documentation necessary to start developing your own applications on the BTnode platform.
This is explained, using a pre-configured toolchain setup on Windows, although other host platforms and tool
setups are possible too (Linux and MacOS X). For detailed instructions on the tool installation, please refer
to the online documentation and links listed under section 1.4 and the software versions listed in appendix A.

2.2 Development Tools

For basic software development you will need an editor, a compiler-assembler-linker toolchain, a standard
library and an in-system programming software to upload the compiled program to your embedded target.
There are many other tools that can make life easier when projects are getting larger and debugging more
difficult. The selection of tools introduced here should provide you with a basic overview and understanding
to define the right set of tools for your personal project needs.

2.2.1 Compilation

The tools introduced here are freely available and are based on GNU GCC and the AVR libc which is a
Free Software project whose goal is to provide a high quality C library for use with GCC on Atmel AVR
microcontrollers. Together, avr-binutils, avr-gcc, and avr-libc form the heart of the Free Software toolchain
for the Atmel AVR microcontrollers. They are further accompanied by projects for in-system programming
software (uisp, avrdude), simulation (simulavr) and debugging (avr-gdb, avr-insight, AVaRICE).

These tools are available packaged as a Windows installer in the WinAVR project which we will use as
a reference. There are numerous other distributions of the avr-gcc toolchain available as well as different
(commercial) compilers for the Atmel AVR family.

A thorough introduction to the internals of such a compiler toolchain as used in embedded systems can
be found in Appendix A: Assemblers, Linkers and the SPM Simulator of [4]. Manuals for the avr-binutils,
avr-gcc and avr-libc are packaged with the respective distribution or available online (see section 1.4).

The following example illustrates a sample compilation, linkage with startup code and libraries as well as
transformation into a machine uploadable format of a sample application called test.c:

avr-gcc -c -mmcu=atmega128 -D__BTNODE3__-I../../include test.c -o test.btnode3.o
avr-gcc test.btnode3.o ../../lib/btnode3/nutinit.o -L../../lib/btnode3 -mmcu=atmega128 -o test.btnode3.elf
avr-size test.btnode3.elf

text data bss dec hex filename
36920 1708 314 38942 981e test.btnode3.elf

avr-objcopy -O ihex test.btnode3.elf test.btnode3.hex

6 CHAPTER 2. FIRST STEPS IN BTNODE PROGRAMMING

2.2.2 Simulation and Debugging

When project size increases and especially in critical situations specialized simulation and debugging tools
can be of great benefit. There are numerous tools available (avr-gdb, JTAG tools, Atmel AVR Studio, GNU
dwarf parser, avr-insight, Avrora, simulavr) serving different purposes, of which a selection will be introduced
in chapter 5.

2.2.3 Project Management

The basic utility used in most build environments is GNU make. The make utility automatically determines
which pieces of a large program need to be recompiled, and issues commands to recompile them. This is a
very convenient way to avoid retyping long lines of parameters on the command line.

Different editors with syntax higlighting and project management features can be used for C based AVR
development. The most common are Eclipse, Emacs, Programmers Notepad and AVR Studio. Especially
Eclipse in conjunction with CDT (C/C++ Development Tools) is a very powerful tool that allows C-indexing,
project management, integration of a make build environment, debugging, version control and much more.

Version control such as with CVS (Concurrent Version System) or Subversion is helpful for keeping track of
changes and sharing source code among team members.

2.2.4 Embedded Target Connection

The software on an embedded system is typically programmed once during manufacturing onto a resident
internal memory from where it is then executed. Software changes are frequent during development but
infrequent during the lifetime of a product.

For uploading code to the flash memory of the ATmega128l (in-system programming) a serial uploader
software (uisp, avrdude, uploader tools in AVR Studio) and an appropriate programmer (hardware) is
necessary.

Although basic debugging can be performed via general purpose IOs and LEDs, verbose terminal output is
generally preferred. For this a RS-232C serial connection is necessary between the embedded target (BTnode)
and a PC. This can be done using a serial level shifter (e.g. Maxim MAX3232) or a USB-serial converter
(e.g. Silabs CP2101).

In addition to uploading code using in-system programming as described above, the ATmega128l features a
bootloader section as well as JTAG uploading and debugging support (see chapter 5 for further information
on JTAG). The bootloader section in the flash memory can be used to re-program the user section of the
flash memory once such a bootloader has been installed. See exercise 14 for further information.

2.2.5 Documentation Tools

The primary source for information for any hard- or software system are its manuals, typically accompanied
by release information, changelogs, readme file and known errata.

The internet is a general resource for developers and project management. More specific mailing lists and
archives offer discussion forums on specific topics, such as the avr-libc library usage and development or on
BTnode specific issues.

Large online project management such as http://www.sourceforge.net offer many services such as electronic
bug tracking systems, version control, web visualization, nightly builds, software distribution and general
project management.

Single projects typically extract documentation from source code. This can be done by tools such as javadoc
or doxygen to automatically generate up-to-date online documentation.

http://www.sourceforge.net

2.3. NOTES ON THE BTNODE HARDWARE ARCHITECTURE 7

2.3 Notes on the BTnode Hardware Architecture

GPIO Analog Serial IO

System
Bluetooth LED’s

SRAM
Radio

Low-power

Power Supply

Microcontroller
ATmega128L

Figure 2.1: BTnode rev3 hardware overview.

System Core – The BTnode System Core consists of an Atmel ATmega128l microcontroller, clocks and
SRAM memory.

• Atmel ATmega128l – 4 kB EEPROM, 64 kB SRAM, 128 kB Flash

• System clock – 32 kHz real time clock and 7.3728 MHz system clock

• 5 processor power modes

• External data cache – 3x60 kByte low power SRAM

• Four LED’s for easy debugging

• In-system programming through serial ISP programmer, JTAG or resident bootloader

Bluetooth Radio – Zeevo ZV4002 Bluetooth radio running HCI firmware. It is connected to the AT-
mega128l through a UART interface.

Low-Power Radio – Chipcon CC1000 radio operating at 868 MHz. Other operating frequencies can be
used according to the CC1000 documentation (433-915 MHz). Both an integrated monopole antenna, an
external wire and an external coaxial connector (MMCX type) are possible though assembly options. The
default assembly variant is the internal monopole antenna and operation in the 868 MHz ISM band.

Power Supply – The standard power supply are 2-cell AA batteries. The common range for these is 2-3 V
DC when either primary or rechargeable batteries are used. The primary boost converter has a nominal
input range of 0.5-3.3 V DC. Alternatively 3.6-5 V can be supplied through the VDC IN pin available on
the external connectors J1 and J2.

• Primary supply – Linear Technologies LTC3429, 600mA max., input 0.5-3.3 V to 3.3 V

• Alternate supply – Linear Technologies LT1962, 300mA max., input 3.6-5.0 V to 3.3 V

• Switchable power-groups for IO, Bluetooth and LPR radio

• Battery charge indicator

• On/Off switch for the primary power supply

A detailed hardware reference is available though the BTnode website (see section 1.4).

8 CHAPTER 2. FIRST STEPS IN BTNODE PROGRAMMING

Figure 2.2: Atmel ATmega128l microcontroller core and peripheral block diagram.

Exercise 1 Find the BTnode rev3.20 Schematic and the ATmega128l Processor Manual pdf files [1]. Browse
the schematic and find the latch (Texas Instruments SN74LVC573A) used to multiplex the extended SRAMs
(AMIC LP62S2048) data and address bus. Which ports of the processor are used to connect to the latch?
Which ports are used to connect to the memory?

Browse for the second latch used to multiplex the LEDs and switchable power supplies. Which port/pin on
the ATmega128l maps to which function (LED/power switches) here? Which are the control lines used for
the latch? Draw a sample output waveform for the microcontroller pins used, that switch the LEDs on and
off.

What are the problems arising from this hardware setup for a software system, especially in the case of an
operating system with concurrency (multiple drivers/tasks/threads)? How would you implement a software
driver for this functionality? Why is SBI/CBI (set bit and clear bit) not sufficient in this case?

2.4. BTNUT SYSTEM SOFTWARE RESOURCES 9

GND

UART0_CTS

UART0_RTS

UART0_TXD

UART0_RXD

PF0

PF1

SDA

SCL

PB4

PE6

PE3

VCC_IO

VCC

VDC_IN

1 G
N

D
2 UART0_CTS
3 UART0_RTS
4 UART0_TXD
5 UARTO

_RXD
6 UART1_CTS
7 UART1_RTS
8 UART1_TXD
9 UART1_RXD
10 PF0
11 PF1
12 SD

A
13 SCL
14 PB4
15 RESET
16 G

N
D

17 VD
C_IN

18 VD
C_IN

19 VCC_IO
20 VCC_IO

40 G
N

D
3938 TD

O
37 TD

I
36 TM

S
35 TCK
34 RSSI
33 PD

ATA
32 PCLK
30 PALE
31 PE3
29 PE6
28 CH

P_O
U

T
27 SS
26 SCK
25 M

ISO
24 M

O
SI

23 G
N

D
22 VCC
21 VCC

Figure 2.3: BTnode rev3 top assembly and connector pinout.

2.4 BTnut System Software Resources

First, we will make you familiar with the development environment and the tool flow. The exercises in this
section are based on using Eclipse and CDT, yet they can also be performed using other project management
environments and editors.

Explanation Getting to know the BTnut system software release:
The BTnut software is released in both a binary snapshot and sourcecode format. The most recent releases
can be downloaded from sourceforge.net.

• The btnode_snap_btnode3_binary contains an out-of-the-box pre-compiled library package for AVR
binary and documentation, ready for usage with the avr-gcc toolchain and the demo applications
included.

• The package btnut_system contains all BTnut and Nut/OS sources. It requires to compile the BTnut
system software and install the documentation prior to the compilation of applications.

The releases are numbered even and are based on the following CVS tag and date:

BTnut snapshot and release -- REL_VERSION = 1.6

Nut/OS -- NUT_SNAPSHOT = 200X-XX-XX

and compiles against the following avr libc:

AVR Libc -- avr-libc 1.4.3

The BTnut pre-compiled snapshot contains 5 directories, app for the applications, doc for documentation,
extras for hardware specific drivers other than the BTnode, include for all headerfiles and lib for the
pre-compiled libraries.

10 CHAPTER 2. FIRST STEPS IN BTNODE PROGRAMMING

The first task to be performed on the BTnut system software will be to set up a working environment within
Eclipse.

Exercise 2 Open the C/C++ perspective in Eclipse. Create a new project called btnut_snap_X.X by se-
lecting “Standard Make C Project” from the pull-down menu. Be sure to set the correct binary parser on the
second screen of the new project wizard (select ELF parser and GNU ELF parser, and enter avr-addr2line
and avr-c++filt) and set the correct compiler (avr-gcc) in the discovery options tab to select the correct
cross-development tools for the AVR platform.

Now import the btnode_snap_btnode3_binary package by selecting Import, Archive File into this project.
As a final task, you will need to configure the project with the correct include paths for the C/C++ parser:
Open the project properties and insert the btnut_snap/include, $(PATH_TO_AVR_GCC_TOOLS)/avr/include
and $(PATH_TO_AVR_GCC_TOOLS)/lib/gcc/avr/3.4.5/include to the projects include paths.

Exercise 3 Open the bt-cmd.c file in the app/bt-cmd folder and go to the line where btn_led_init(1); is
called. Highlight the function name, then press F3 to open the functions Declaration from the appropriate
header file. Right click the function name again and search for All References in the Workspace.

Be sure to switch to the C/C++ Perspective in Eclipse and open the C/C++ Projects View (see figure 2.4).

Figure 2.4: The C/C++ perspective with the C/C++ Projects view on the left, a file editor in the top,
console view in the bottom middle and the Make Target view open on the right.

Exercise 4 Open the BTnut System Software Reference (online version: BTnut API on http://www.btnode.ethz.ch,
or local in doc/html) in a web browser and open the file

btnode/include/led/btn-led.h

from the File List. Read the documentation provided for the btn_led_init() and btn_led_add_pattern()
functions.

http://www.btnode.ethz.ch/static_docs/doxygen/btnut
http://www.btnode.ethz.ch

2.4. BTNUT SYSTEM SOFTWARE RESOURCES 11

Exercise 5 Go back to the bt-cmd.c file and add a new led pattern for the LED heartbeat us-
ing btn_led_add_pattern in line 103. While typing the function name btn_led_add_pattern press
CTRL-SPACE to invoke Eclipse’s Content Assist function and complete the line with the correct arguments
to create a dual blinking LED pattern using these parameters:

pattern = BTN_LED_PATTERN_HALF
arg = 0
speed = 10
nr = BTN_LED_INFINITE

Exercise 6 Check the documentation available in the datasheets, application notes, mailing list archives,
Nut/OS webpage, Avrfreaks forum, tool resources, etc... to get an overview on the different compilers,
libraries, programming variants and hardware programmers available for the Atmel AVR family.

Exercise 7 Open the avr-libc Manual (online version available on the avr-libc webpage). Find the mathe-
matics functions in the avr-libc and check what functions are supported. Compare this selection to the CPU
description found in the ATmega128l Manual and the instruction set of the ATmega128l found in the AVR
Instruction Set Manual. Don’t forget to read the available footnotes to learn about device specific options.

Think about what functions you would like to use to implement certain algorithms. Why are function such
as tan() present, but simple multiply and divide operations are missing? How would you implement a fixed
point division or even floating point operations for the AVR?

In addition check the FAQ found in the avr-libc Manual Related Pages documentation (especially entry 2)
and the General Utilities Module of the avr-libc Manual for information on further functions like div(),
qsort and rand().

Are there other libraries and languages available for the AVR family? Search for possible solutions on the
web.

Optional Exercise 8 When linking an application for a microcontroller a startup or initialization code
needs to be integrated that controls the bootup and initialization procedure and sets the system into a de-
fault state after power-on. This behavior can be specifically controlled by a memory map and init sections.
For an introductory documentation of the most common compiler flags and build steps, read through the
Demo Projects Module in the avr-libc Manual.

This topic is very complex. So we will generally use a pre-configured set up from the BTnut build system to
integrate the (hardware dependant) correct startup code and memory map.

Optional Exercise 9 In addition to the ChangeLog and README files provided with the BTnut System Soft-
ware, the project management environment on http://sourceforge.net/projects/btnode has a Tracker and
Tasks section to track bugs, requests for enhancements (RFEs), support requests etc. Check these locations
to learn more about development issues and possible caveats. If you discover a bug either enter it into
sourceforge.net or post them on the BTnode mailing list.

Now you have gained an overview of the BTnut System Software, developing in Eclipse and know how to
navigate code and search for documentation.

http://sourceforge.net/projects/btnode

12 CHAPTER 2. FIRST STEPS IN BTNODE PROGRAMMING

Explanation BTnut Configuration Options:
The BTnut System Software uses a GNU make based build system. The basic configuration is done in a file
Makerules and parameters are defined in Makedefs and can be overridden by setting them as environment
variables:

BURN = avrdude

BURNPORT = /dev/ttyS0

BURNFLAGS = -pm128 -cavrispv2 -P$(BURNPORT) -s

Alternatively you can use uisp with the settings:

BURN = uisp

BURNPORT = /dev/ttyS0

BURNFLAGS = -dprog=stk500 -dpart=atmega128 -dserial=$(BURNPORT) \\

--wr_fuse_e=0xFF --wr_fuse_h=0x00 --wr_fuse_l=0xBF

Defines for btnode3 platform

MCU.BTNODE3 = atmega128

ARCH.BTNODE3 = avr

HWDEF.BTNODE3 = -D__HARVARD_ARCH__ -D__BTNODE3__

#DEFS.BTNODE3 = $(HWDEF.BTNODE3)

DEFS.BTNODE3 = -DNUTTRACER $(HWDEF.BTNODE3)

#DEFS.BTNODE3 = -DNUTTRACER -DNUTTRACER_CRITICAL $(HWDEF.BTNODE3)

#DEFS.BTNODE3 = -DNUTDEBUG $(HWDEF.BTNODE3)

Here, you can select parameters for the default programming interface and define debugging verbosity. We
will make use of these features in later chapters of this tutorial.

2.5 First steps in BTnode programming – Using the avr-gcc
toolchain

We will now use the tools to compile and upload a first program to the BTnode.

Explanation ISP Programming Variants: There are numerous software and hardware components
that allow ISP programming of an Atmel AVR microcontroller.

The default tool supported by Atmel is AVR Studio which offers a graphical user interface, simulation
and project management capabilities. To use it for programming of an AVR only, open the tool and select
the Program AVR entry from the Tools Menu. Be sure to select the correct device (ATmega128) in the
Program Tab, do not change the fuse bit settings and select the right Communications Settings (Auto)
in the Advanced Tab (see figure 2.5). When continuing from the command line be sure to close AVR Studio.

There are numerous command line tools for ISP programming as well. These are often more convenient
than the GUI based tools. You have already used avrdude which also supports a GUI on windows.

For further informations such as using the bootloader function read the Atmel Applications Notes AVR109:
Self Programming, AVR910: In-System Programming and AVR911: AVR Open-source Programmer.

Exercise 10 Open a command line shell and check if your avr-gcc toolchain is installed and working cor-
rectly. First check the versions of the avr-gcc toolchain by entering avr-as --version, avr-gcc -v and
avr-ld -v. Furthermore we will test avrdude -v (optional also uisp --version) that we will later use to
upload code to the ATmega128l.

Optional Exercise 11 To see specific hints and help on the toolchain, execute the tools with the --help
parameter from the command line or the man pages (unix) to get detailed online help.

2.5. FIRST STEPS IN BTNODE PROGRAMMING – USING THE AVR-GCC TOOLCHAIN 13

Figure 2.5: AVR Studio offers a graphical frontend to programming, simulation and project management
functions.

Exercise 12 Now connect a BTnode to your PC using a usbprog board and a USB cable (see figure 2.6).
Further connect an Atmel ATAVRISP programmer to the usbprog board and to a serial port on your PC.
The default settings are /dev/ttyS0 for programming through an ATAVRISP and /dev/ttyUSB0 for debug-
ging through the serial port of the BTnode. (If in doubt about the right serial port for debugging use the
List_USB2UART script on windows or check /var/log/messages on linux.).

Try to communicate with the ATAVRISP and the ATmega128l on the BTnode:

avrdude -pm128 -cavrispv2 -P/dev/ttyS0

Explanation Using the USB-UART adapter board : The usbprog rev2 board is used for a breakout
of all pins available on connector J1. Furthermore it contains a USB to UART converter (Silabs CP2101)
that is used to connect the debug UART of the ATmega128l to a PC (default usage). A dedicated
connector for ISP programming is also available on the usbprog board. Also when using the USB
connection, the BTnode is remotely powered from the PC to save battery power.

Be sure to orient the usbprog board correctly as shown in figure 2.6. The board goes above the power
switch of the BTnode with the two mounting holes matching those on the BTnode. If in doubt about the
right serial port for debugging use the List_USB2UART script on windows or check /var/log/messages on
linux.

Exercise 13 Now upload a first pre-compiled application to your BTnode. Download the newest example
application file bt-cmd.btnode3.hex from the BTnode project sourceforge.net file release page. Open a com-
mand line shell. In this step you will two use avrdude commands that are executed by the ISP programmer:
erase and upload. First erase any programs present in the flash memory of the ATmega128l using erase:

avrdude -pm128 -cavrispv2 -P/dev/ttyS0 -e

14 CHAPTER 2. FIRST STEPS IN BTNODE PROGRAMMING

Figure 2.6: Debugging a BTnode using a USB connection to a serial port and ISP programming with the
Atmel ATAVRISP.

Then program the new application code from an Intel Hex file format to the BTnode using upload:

avrdude -pm128 -cavrispv2 -P/dev/ttyS0 -D -V -s -U flash:w:bt-cmd.btnode3.hex:i

The -D flag disables the auto-erase function, the -V flag disables auto-verify and the -s flag requires safemode.
You can add the -v flag to receive more verbose output. Observe the LEDs on the BTnode for output from
your first uploaded program.

Explanation Installing the bootloader : Download the newest bootloader file
bootloader.btnode3.hex from the BTnode project sourceforge.net file release page. To install the
bootloader, proceed to upload this program code to the BTnode using the ISP programmer as described
analogously for bt-cmd.btnode3.hex in exercise 13. Now your BTnode is ready to receive software flash
reprogramming instructions.
To compile your own bootloader, navigate to the btnut system/btnut/app/bootloader folder. Compile
the bootloader by executing make btnode3. You should now have a file called bootloader.btnode3.hex.

Optional Exercise 14 An alternative to using the ISP programmer is using a bootloader on the BTnode
that can emulate ISP behaviour. The bootloader may or may not be installed on your BTnode but can be
built from source code and installed using the method introduced in the previous exercise. See the explanation
box below for more information.

As of now [April 2006], the bootloader is not fully compatible with avrdude, so we will need to use the uisp
tool. Again, open your shell to the location where you have placed bt-cmd.btnode3.hex.

Now, to upload the program code:

1. press and hold the reset button on the BTnode

2. execute the upload command below

3. release the reset button on the BTnode

uisp -dprog=stk500 -dpart=atmega128 -dserial=/dev/ttyS0 --upload if=bt-cmd.btnode3.hex

If you can’t find the reset button, see figure 2.7. If you get strange error messages while programming, try to
disconnect and reconnect the USB cable.

2.5. FIRST STEPS IN BTNODE PROGRAMMING – USING THE AVR-GCC TOOLCHAIN 15

Figure 2.7: BTnode reset button

Exercise 15 Erase the bt-cmd application on the BTnode. Open a terminal programm to the serial port
you have connected your usbprog board with 57.6k, 8N1, no handshake to observe the terminal output from
the BTnode.

Upload the simple application uart-echo.btnode3.hex with uart output to the BTnode. As soon as the
uart-echo application responds, you can type and see the response on the LEDs. This time use the auto-erase
function and auto-verify on avrdude:

avrdude -pm128 -cavrispv2 -P/dev/ttyS0 -s -U flash:w:uart-echo.btnode3.hex:i

WARNING: DO NOT USE OTHER LOW-LEVEL COMMANDS WHEN IN-SYSTEM PRO-
GRAMMING UNLESS YOU KNOW WHAT YOU ARE DOING AS IT COULD DAMAGE
THE MICROCONTROLLER!.

Exercise 16 Now go back to the bt-cmd application in Eclipse that we modified earlier and save the changes
we have made. Open a command line shell on this directory. Compile the bt-cmd application by entering:

make btnode3

Then upload the newly compiled application to the BTnode with:

make btnode3 upload

Observe the different LED heartbeat compared to the pre-compiled bt-cmd.btnode3.hex we uploaded earlier.
Check the terminal program for output. Hit Tab twice to get a selection of commands possible in the bt-cmd
application. Explore the different functions available in this demo application. Try to locate different BTnodes
by issuing bt inquiry sync.

16 CHAPTER 2. FIRST STEPS IN BTNODE PROGRAMMING

Explanation The bt-cmd demo application: The bt-cmd demo application is a brief example of how
to use the Bluetooth radio and protocol stack. Once the application has booted and is ready on a serial
terminal with 57.6k, 8N1, no handshake you can check the list of available commands by hitting Tab twice.

--
Welcome to BTnut (c) 2006 ETH Zurich
bt-cmd program version: 20060405-1206
$Id: firststeps.tex,v 1.10 2006/05/12 20:45:19 beutel Exp $
running @ 7.3628 MHz, NutFreq=1024l Hz

booting Bluetooth module...
Bluetooth MAC address: 00:04:3f:00:00:d2
HCI version: 2 00C9 2 0012 003D
LMP features: 03 10 00 FF FF 05 F8 1B
Local name: ’ZeevoEmbeddedDevice’
hit tab twice for a list of commands
[bt-cmd@00:d2]$
bt led bat nut log
[bt-cmd@00:d2]$

There are NutOS/BTnode and Bluetooth specific commands (if called without arguments they will show
hints on the correct syntax, where applicable).
bt – bluetooth radio commands
led – toggle LED patterns
bat – get the battery status
nut – show OS system information
log – BTnut logging features

For reference on Bluetooth [3] see the support documents and links provided on the BTnode web-page (see
section 1.4).

Exercise 17 To simplify the building and uploading we will now create Make Targets in Eclipse that you
can execute with a single click.

Open the Make Targets View (Window → Show View → Other → Make) and navigate to the app/bt-cmd
folder. Right click onto this folder and select Add Make Target. Alternatively you can create different targets
by entering make arguments such as all, btnode3, version or clean.

Then use these Make Targets to automatically build and upload selected applications from within Eclipse.
You can observe the progress and console output from the respective views.

Exercise 18 Right click onto the bt-cmd.c file in the C/C++ Projects View and select Compare With
Local History to see the changes you have made earlier.

Exercise 19 Create a new folder in the app directory and copy the bt-cmd/Makefile to this folder. Create
(or alternatively copy and rename) a new application.c file in this folder. Be sure to edit the project name
in the Makefile.

Now you are ready to program your first own project using BTnut.

Explanation Resetting the work environment to initial conditions: The pre-compiled BT-
nut snapshot used in this tutorial can be obtained from http://sourceforge.net/projects/btnode, sec-
tion Files. Download the btnut_snap_btnode3_binary_x.x.tar.gz file and unpack it to a location
of your choice. Now create a new Standard C/C++ Project in Eclipse and import the files from the
btnut_snap_avrbinary archive.

Optional Exercise 20 In order to stay up to date on the bleeding edge development codebase of BTnut
you will need to check out the most current version from the CVS repository on sourceforge.net. Open the
CVS Repository Exploring perspective in Eclipse and create a new CVS repository:

http://sourceforge.net/projects/btnode

2.5. FIRST STEPS IN BTNODE PROGRAMMING – USING THE AVR-GCC TOOLCHAIN 17

Host: btnode.cvs.sourceforge.net
Repository path: /cvsroot/btnode
User: anonymous
Connection type: pserver

The check out the CVS HEAD of the module btnut as a Standard Make C Project. You can check for
changes to the most current CVS tag HEAD or to other dates and tags by seleting Compare With... or
Replace With....

Before building the demo applications in the app directory you will need to check out a release of Nut/OS
either by executing make nut_cvs_sources in the btnut directory or by checking it out from CVS into a paral-
lel project as described above (host btnode.cvs.sourceforge.net, repository /cvsroot/ethernut, module
nut. The build the BTnut libraries first by executing make clean and make all in the btnut directory.

18 CHAPTER 2. FIRST STEPS IN BTNODE PROGRAMMING

19

Chapter 3

Device-Level Programming

3.1 Introduction

The goal of this session is to familiarize the reader with some peculiarities of programming microcontrollers
that have a rich set of peripherals. After going through the tutorials and exercises, you should be able to
understand and write simple drivers which allow you to use these peripherals efficiently. To work through
the whole chapter takes you approximately four hours, without the optional exercises about two hours.

In this session, we will avoid using library functions and operating system support as far as possible. The
reason is that you should be able to really understand what is going on instead of using some black-box
functionality. Clearly, this type of programming is often a bit cumbersome. But you will enjoy the comfort
and convenience of an operating system that you will learn to use in the next session all the more.

In Section 3.2, the use of off-chip resources is explained using the example of the LEDs on the BTnodes. In
Section 3.3, the reader learns how to use the analog-digital converter of the ATmega128 as an example for
an on-chip resource. In Section 3.4, we introduce interrupts. The final Section 3.5 deals with critical sections
that are required to protect shared data.

3.2 Off-chip resource: Setting and Clearing LEDs

As a first example, we now use the LEDs on the BTnode. The reason for this choice is that for any further
work with the BTnodes, we need some kind of feedback from the programs we implement. The LEDs are
an off-chip resource. Unfortunately, accessing the LEDs is a bit tricky and requires some “hacks”, which are
explained in the following.

The address bus of the ATmega128 is 16 bit wide and it is mapped to the ports A (lower 8 bits) and C
(upper 8 bits). The address bus is mainly needed to access the external SRAM (AMIC LP62S2048), but at
the same time it is also connected to the LEDs via a latch. To set or clear LEDs, the bits that determine
whether the LEDs should be on or off have to be put on the address bus. Then the latch is enabled, i.e. it
samples the value on the address bus. After a while, the latch is disabled, i.e. it holds the previously samples
value. The following function does exactly this:

void write_led(u_char value) {

volatile u_char * pointer;

u_char dummy;

// compute the pseudo-address that contains the values for the LEDs

pointer = (u_char *) (((u_short)value) << 8);

// force the compiler to write this pseudo-address to the address-bus

dummy = *pointer;

// now enable the latch

20 CHAPTER 3. DEVICE-LEVEL PROGRAMMING

PORTB |= 1<<PB5;

// wait a moment

asm volatile ("nop" ::);

// disable the latch, i.e. hold the value

PORTB &= ~(1<<PB5);

}

Explanation volatile:
Note the keyword volatile before the declaration of pointer. It tells the compiler that code lines
containing pointer should not be optimized at all. This is necessary because the compiler does not know
anything about external off-chip resources like the LEDs. Thus it cannot understand why we compute
the variable dummy, which is never used afterwards. If volatile were omitted, the compiler would simply
ignore such “nonsense” statements.

Explanation Accessing special purpose registers:
The names of special purpose registers are defined in the hardware/btn-hardware.h header file and in
header files included therein. These names can be used like variables. For example you may read the
content of the PORTB register using

u_char current_portb = PORTB;

Similarly, you can write to such a register in the same way as you write to a variable, e.g.

PORTB = 0xff;

sets all bits of the PORTB register to one.
Most often however, you only want to read or write a single bit of a special purpose register. This can
be done by using the bitwise and / or operators. The names of individual bits are also defined in the
header files. But these names cannot be used like variables, they are simple aliases for the position of the
corresponding bit within a register. For example PB5 is an alias for 5 since the PB5 bit is the fifth bit within
the PORTB register (counted from the left starting with 0). Examples:

if (PORTB & (1<<PB5)) // checks whether the PB5 bit is set

PORTB |= 1<<PB5; // sets the PB5 bit to one

PORTB &= ~(1<<PB5); // clears the PB5 bit

Exercise 21 To check whether you have understood how LEDs are controlled, use the BTnode schematics
to figure out the value needed to switch on the blue LED. Explain the computation of pointer.

As a start, we write a program that blinks with the blue LED. The main routine thus looks as follows:

#include <hardware/btn-hardware.h>

int main(void) {

DDRB |= 1<<DDB5;

while (1) {

// toggle the blue LED

// wait a second

}

return 0;

}

Explanation Configuring the direction of IO ports:
The line before the infinite loop configures the fifth bit of the DDRB register. DDRB stands for Data
Direction Register of Port B and this operation declares the fifth pin of port B to operate as an output pin.
After this line, you are free to use the write led function shown above. See pages 63ff in the ATmega128
manual for a detailed explanation.

3.3. ON-CHIP RESOURCE: THE ANALOG TO DIGITAL CONVERTER 21

Exercise 22 Complete now the program sketched above. In order to see what your program does, you will
have to implement a pause function. Do this using a loop that increments a counter variable.

Optional Exercise 23 Once your program is running, try to estimate the clock frequency of the AT-
mega128. Do this by counting the operations in the loop of your pause function. HINT: Look at the
list file (<program name>.lst) which has been created by the compiler. Even without understanding any
assembler at all you can find your function by searching for its name. You can identify the loop by looking
at the labels (“.L6:”, for example) and the branch instructions (“brlo .L6”, for example). Assume that all
assembler instructions take one cycle to execute.

3.3 On-chip resource: The Analog to Digital Converter

The ATmega128 microcontroller contains an on chip analog to digital converter (ADC), whose detailed
description can be found on pages 231 to 247 of the ATmega128 manual. As for all on-chip resources, the
ADC can be configured by writing to special purpose registers, its status and the conversion result can be
accessed by reading from special purpose registers. In the case of the ADC, the two 8 bit registers called
ADMUX and ADCSRA are used for configuration and status. The two 8 bit registers called ADCH and
ADCL are used to deliver the conversion result.

As we now know how to use the LEDs, we can start writing more complex programs. We now want to
sample the battery power and show the result using the LEDs. The solution should look as follows:

#include <hardware/btn-hardware.h>

int main(void) {

int battery_power;

DDRB |= 1<<DDB5;

while (1) {

battery_power = get_battery_voltage();

// if battery_power below 1000mV, switch on red LED

// if battery_power between 1000mV and 2000mV, switch on yellow LED

// if battery_power above 2000mV, switch on green LED

// wait a second

// switch on blue LED

// wait a second

}

return 0;

}

We now have a more detailed look at the function get battery voltage. Its skeleton looks as follows:

int get_battery_voltage(void) {

// configure ADMUX

ADMUX |= 1<<MUX0;

ADMUX |= 1<<MUX1;

// configure ADCSRA register such that the conversion

// is as slow as possible and the ADC is enabled

// start conversion and wait for result

// read (and convert ?) result

}

In a first step, the ADMUX register is configured. As you can see in the manual, page 244, all bits are cleared
at startup and we only have to write the bits which we want to be one. Looking at BTnode schematics, we

22 CHAPTER 3. DEVICE-LEVEL PROGRAMMING

see that the BAT SENSE signal is connected to pin 3 of port F. From the manual, page 239 we know that this
pin is the third channel of the ADC and table 98 on page 244 tells us that we have to set the bits MUX1 and
MUX0 from the ADMUX register to sample the voltage from channel three. We leave the ADLAR bit cleared. The
REFS1 and REFS0 bits are left cleared because we use the external voltage reference connected to the AREF
pin of the ATmega128.

WARNING: DO NOT USE OTHER SETTINGS FOR THE REFSx BITS, IT COULD DE-
STROY THE MICROCONTROLLER!.

Exercise 24 Now its your turn to configure the ADCSRA register. For maximal precision, we want the slowest
conversion speed. We do not use interrupts and we want to do a single conversion.

After having configured the ADC, the conversion can be started. This is done setting the ADSC bit of the
ADCSRA register. This bit is automatically cleared when the conversion is completed. Wait for this condition
and then read the result from the ADCL and the ADCH register.

Determine the values you expect from the ADC for a battery voltage of 1 volt and 2 volts, knowing that
the reference voltage is 3300 millivolts, the ADC delivers 10 bit values and the BAT SENSE signal is half the
battery voltage (see schematics).

HINT: If your conversion result is always zero, make sure that (i) you either have batteries in your BTnode
or you have connected the battery contacts to an external power supply and that (ii) the power switch is on (if
connected to the USB cable, the BTnode is also powered if this switch is off, but then the BAT_SENSE signal
is 0).

3.4 Writing interrupt routines: Hardware Timers

In this section, the program from the previous section is modified such that it periodically samples the
battery voltage in a timer interrupt routine. The advantage is that now the microcontroller can do other
work in parallel. The processor load created by the timer interrupt is measured using an IO pin and the
oscilloscope.

Explanation Hardware Timers:
Another type of on-chip resources are timers. In principle, timers are counters that are incremented
automatically. By the use of configuration registers, the speed of incrementing the timers can be adjusted
and whenever the timers overflow or reach a specified value, they trigger an interrupt.

Explanation Interrupt Service Routines (ISR):
Interrupts are used to execute a function, the so-called interrupt service routine. The normal program flow
(the main function, in our case) is interrupted and the interrupt service routine is executed. As soon as it
terminates, the normal program flow is resumed exactly at the position where it was interrupted.

Timer interrupts can thus be used to execute some periodic functionality without having to spend the whole
processing time on waiting. An example is shown here:

#include <hardware/btn-hardware.h>

#include <dev/irqreg.h>

static void timer3IRQ(void *arg) {

// switch on green led

}

int main(void) {

// register interrupt service routine

NutRegisterIrqHandler(&sig_OVERFLOW3, timer3IRQ, 0);

3.5. PROTECTING SHARED DATA AND RESOURCES 23

// configure the speed of the timer

TCCR3B |= 1<< CS30;

TCCR3B |= 1<< CS32;

// enable the interrupt at overflows of the timer

ETIMSK |= 1<< TOIE3;

while (1) {

// toggle the blue led

// wait a second

}

return 0;

}

In addition to the main routine, the interrupt service routine (ISR) timer3IRQ is defined. At the very begin
of main, timer3IRQ is registered as the service routine for the sig OVERFLOW3 interrupt, that is for the event
that timer 3 overflows.

After registering the ISR, the timer is configured. The CS30 and CS32 bits of the TCCR3B register are set
to configure the speed of the timer. In this case, the timer is incremented every 1024 clock cycles (see page
135 of the manual). The timer does not have to be started, it is always active. However, the generation of
interrupts when the timer overflows has to be enabled. This is done by setting the TOIE3 bit of the ETIMSK
register.

Exercise 25 We now will modify the previous program, such that the battery power is sampled in a timer
ISR. Use timer 3 in such a way that the battery power is sampled approximately once every two seconds.
The ISR displays the sampled result on the LEDs, but in contrast to the previous program, it does not wait
and switch on the blue LED. HINT: To adjust the interval of the ISR, you can change the prescaler (CS3x
bits) and/or set the timer manually to a non-zero value after every overflow.

Optional Exercise 26 Modify the program from the previous exercise using the clear timer on compare
match (CTC) mode of the hardware timer, which is described on page 121 and 131ff. Also use the ISR to
display the result of the battery power sampling using the LEDs as in the previous example.

In a real-world program, often a large number of different interrupts are used to service multiple peripherals
at the same time. By default, interrupts are blocked while an ISR is executing, thus different interrupts can
block each other. Therefore the careful programmer aims at keeping ISRs as short as possible.

Optional Exercise 27 Measuring the execution time of an ISR can be done as follows: On a free IO pin
of the ATmega128, we generate a rising edge at the begin of the ISR and a falling edge at the end. The
time that the IO pin is high can then be measured on an oscilloscope. For example we may use pin 0 of port
F, which is a good choice since it is accessible as pin 6 on the 15-pin-connector of the BTnode, as you can
verify on the BTnode schematics. Connect this pin and ground (e.g. from pin 1 of the 15-pin-connector)
to the oscilloscope. Set up pin 0 of port F as an output pin using the DDRF register. How long takes your
ISR to execute? How much of the processing power is thus used for sampling the battery power every two
seconds? HINT: If you only have an analogue oscilloscope, you may have to decrease the interval of the
ISR drastically (e.g. 10ms is a good value) in order to display the generated waveform properly.

3.5 Protecting shared data and resources

In this section, the program from the previous section is extended to write measured data to the terminal.
It is explained why this should not be done from interrupt context. Thus the sampled data has to be shared
by the ISR, which determines the battery voltage and the main routine, which prints it to the terminal. It is
explained why this shared data has to be protected from uncoordinated concurrent access by multiple flows
of control and how this can be done.

24 CHAPTER 3. DEVICE-LEVEL PROGRAMMING

Explanation Using the terminal :
The ATmega128 has also two serial interfaces, so called Universal Asynchronous Receiver Transmitter
(UART) units. The UART1 is used to connect the ATmega128 to the Bluetooth module. The UART0 can
be used to write ASCII text to the terminal, which is a program running on the host computer. Writing
text to the terminal can be done using the well-known printf function from the avr-libc. Most standard
conversion strings (e.g. %d for signed integers) and special characters (e.g. \n) can be used, but not all.
For example the float conversion (%f) is not implemented.

int variable = 13;

printf("Hello world, ");

printf("my lucky number is %d\n",variable);

The printf function writes a formatted string to the standard output stream. But before using printf,
we have to setup the standard output stream explicitly, that is we have to define that we want to link the
standard output to the UART0. This can be done using a routine like to following:

#include <hardware/btn-hardware.h>

#include <stdio.h> // freopen

#include <io.h> // _ioctl

#include <dev/usartavr.h> // NutRegisterDevice, APP_UART, UART_SETSPEED

void init_stdout(void) {

u_long baud = 57600;

btn_hardware_init();

NutRegisterDevice(&APP_UART, 0, 0);

freopen(APP_UART.dev_name, "r+", stdout);

_ioctl(_fileno(stdout), UART_SETSPEED, &baud);

}

To read data from the terminal, you can use the function fscanf.

Optional Exercise 28 Write a program, that samples the battery voltage once every two seconds using a
timer ISR. Instead of displaying the result on the LEDs, print it to the terminal from within the ISR. Measure
the execution time of the ISR using the oscilloscope.

The measurement of the execution time of the ISR shows that printf takes a lot of time. We have discussed
before that ISRs should be as short as possible. Therefore we want to do the printing of the sampled battery
voltage from the main routine. Of course we want to print every measurement result exactly once.

Exercise 29 Rewrite the program from Ex. 28 such that the battery voltage is sampled in the ISR but that the
printing of the result is done in the main routine. To do this, you have to think about some communication
mechanism between the two flows of control.

Optional Exercise 30 Instead of printing the result from reading the ADCL and ADCH registers directly,
print it in millivolts. HINT: Remember that an unsigned short variable overflows at 65536, thus be careful
about the data types you use.

The program you have written probably works just fine. But if you would have a lot of time to observe its
behavior (or if you are “lucky”), you would notice that sometimes strange values are printed on the terminal.

3.5. PROTECTING SHARED DATA AND RESOURCES 25

Explanation Corruption of Unprotected Data:
If two flows of control, e.g. the main routine and an ISR access a piece of data, its value can become
corrupted. Assume that the ISR writes to a 16 bit variable which is read by the main routine. Assume
that its value at some point of time is 0x00ff. Now the main routine first reads the upper byte, that is
0x00, and then the ISR is executed. The ISR may increment the variable to 0x0100. After the ISR has
terminated, the main routine continuous reading the variable and reads the lower byte as 0x00. Now the
main routine has read the variable as 0x0000, which is far off the real value of either 0x00ff or 0x0100.

This problem can be solved by using critical sections, that is by protecting the access of a shared variable
in the main routine from being interrupted by an ISR. The other way round is no problem, since an ISR
cannot be interrupted by the main routine.

Explanation Enabling and Disabling Interrupts:
To protect a piece of code from being interrupted, you can disable interrupts globally using the function
cli(). To reenable interrupts, you can use the function sei(). These instructions clear and set the I-bit
of the SREG register, which is the main status register of the ATmega128 microcontroller.

Exercise 31 Protect the shared data that is used in your program from Ex. 28. Do this by implementing
the functions EnterCritical and ExitCritical. Make sure that ExitCritical does not enable interrupts
if they were disabled before EnterCritical.

Optional Exercise 32 Not all data access conflicts are so easily visible as the shared variable from Ex. 28.
For example our implementation of the write led function has a problem of this kind too. Explain why and
fix it.

26 CHAPTER 3. DEVICE-LEVEL PROGRAMMING

27

Chapter 4

Programming with Threads

4.1 Introduction

In this chapter, we introduce the BTnut operating system (OS). In comparison with the exercises of the
previous chapter, this has two main consequences:

• Complicated programs can be divided into a set of threads. Programming a single thread is much easier
than programming the whole functionality in a single program. The coordination of the execution of
these threads is done by the operating system. It is the main focus of this chapter to introduce the API
of the BTnut OS for creating, executing and terminating threads, as well as for the communication
and coordination of such threads.

• You do not have to read hardware schematics and manuals when you want to use resources since we
now can use library functions. In this chapter you will use such functions for accessing the LEDs and
the terminal. Also for the analog to digital converter we have used in the last chapter such library
functions would be available, see the dev/adc.h header for a description. There is even a function
btn_bat_measure, doing exactly what we have done manually (see hardware/btn-bat.h).

Section 4.2 deals with the creation of threads. Section 4.3 introduces a special thread provided by the BTnut
OS, called “terminal”. This thread is used to allow interactive control of a BTnut application. In Sect. 4.4,
events are introduced as a means of coordination and communication between threads.

4.2 Creating Threads

First we look at how threads are defined.

Explanation Creating Threads:
Threads are functions. For example, the main routine is a thread, which is started automatically after
startup. Additional threads have to be declared using the THREAD macro. An example defining the thread
my thread is shown below.

THREAD(my_thread, arg) {

for (;;) {

// do something

}

}

Functions that are used as threads are supposed to never return, thus to loop endlessly. The second
argument of the THREAD macro, called arg here, is a void pointer and can be used to pass an argument of
arbitrary type to the thread when it is created.

28 CHAPTER 4. PROGRAMMING WITH THREADS

The thread my thread is now defined, but it has to be started before it becomes active.

Explanation Running Threads:
A thread can be activated by any other thread, e.g. by the main routine. This is done using the command
NutThreadCreate.

#include <sys/thread.h>

#include <sys/timer.h>

int main(void) {

if (0 == NutThreadCreate("My Thread", my_thread, 0, 192)) {

// Creating the thread failed

}

for (;;) {

// do something

}

}

The first parameter defines a name for the thread, the second parameter is the name of the function we
have defined before. The third argument is a pointer, which is passed to the thread function (the second
argument arg of the THREAD macro); we do not use this feature here and thus an arbitrary value can be
used. The last argument is the size of the stack that is allocated for the thread. This stack is used for
local variables and for passing arguments when calling subroutines. If this value is chosen too large, the
system may run out of heap memory. If it is chosen too small, the thread overwrites memory that is used
otherwise, which results in unpredictable behavior. See page 31 for a method to check whether your stack
size is correctly chosen. For now, just use 192 and you will be fine.

Some threads are already defined by the operating system. For example there is a thread that controls the
LEDs.

Explanation LED Thread :
Instead of controlling the LEDs directly as we have done in the Ch. 3, we can use the LED API of the
BTnut OS. To do this, we have to include the led/btn-led.h header file and then we can initialize the
LEDs using btn_led_init. This function has a single argument and if this is not 0, then it starts the LED
thread. The LED thread allows you to display dynamic patterns on the LEDs with a single command,
i.e. using btn_led_add_pattern or btn_led_heartbeat. See the BTnut system software reference for a
detailed description of these commands. By default, the LED thread starts to blink with the blue LED
after initialization.
We still can switch on and off LEDs individually using the commands btn_led_set and btn_led_clear.
Both functions have the number of the LED as their single argument. The LED thread will remember the
pattern it was showing before LEDs are switched on manually and restart displaying the pattern after all
these LEDs are cleared again manually.

Explanation NutThreadYield :
The BTnut OS is a cooperative multi-threading OS. In principle (we will see an exception later on), threads
that run only yield the CPU to other threads when this is explicitly coded. The most simple way to do this
is NutThreadYield(), a function that has no parameters. This function causes the OS to check whether
other threads with higher priority are ready to run. If this is the case, the current thread is suspended,
i.e. NutThreadYield does not return and the thread with the highest priority among those that are ready
to run is given the CPU. If no thread with a higher priority than the current thread is ready to run,
NutThreadYield returns immediately.

Exercise 33 Write a program, that creates a thread as explained above. This thread shall repeatedly turn
on the blue LED (using btn led set(0)) and switch off the red LED (using btn led clear(1)). The main
routine, after having created the thread, shall do the opposite, i.e. turn on the red LED and switch off the

4.2. CREATING THREADS 29

blue LED. Which LEDs are switched on? Why? Add a single NutThreadYield such that the other LED is
switched on. Add a second NutThreadYield, such that both LEDs are switched on by turns (you will see both
LEDs switched on, because the main routine and the thread alternate very quickly).

Explanation NutSleep:
There are other ways to yield the CPU to other threads than NutThreadYield. It is quite a common
situation, that a thread has finished some work and now wants to pause for a while. Remember that in
the last chapter, we have implemented the pause function for this purpose. But this solution had the
disadvantage of blocking the CPU during the whole pause. Thus you preferably use the NutSleep function
as shown below

#include <sys/timer.h>

THREAD(my_thread, arg) {

for (;;) {

// do something

NutSleep(1000);

}

}

The NutSleep function has a single parameter, which determines the number of milliseconds after which
the execution of the thread shall be resumed. NutSleep yields the CPU to other threads, which can do
useful work during the sleep period.

Exercise 34 Write a program with a main routine and an additional thread. Both threads repeatedly write
a message to the terminal and sleep for one second. What do you observe? What did you expect? Do not
worry if the two answers do not match, you have just discovered a bug of the BTnut OS (which will be fixed
soon, hopefully).

Explanation Thread Priorities:
In the BTnut OS, threads have a priority in the range of [0, 254], a lower value means a higher priority.
The default priority is 64. You may assign the current thread a higher priority, e.g. 20, using

THREAD(my_thread, arg) {

NutThreadSetPriority(20);

for (;;) {

// do something

}

}

The thread priorities are used to decide which of several ready to run threads shall be executed. When all
ready to run threads have the same priority, the threads are processed in FIFO order.
Note that changing the priority of a thread may implicitly yield the CPU to another thread. This is the
case if the running thread reduces its priority and then is no longer the thread with the highest priority
that is ready to run.

Optional Exercise 35 Repeat Ex. 34 giving the additional thread a higher priority. Compare the output
with what you received in Ex. 34. Repeat the experiment giving the additional thread a lower priority. What
do you observe?

Optional Exercise 36 Write a program with two threads that permanently write to the terminal using
printf without sleeping. Describe the observed behavior and explain, why it is different from what you would
expect from the theory of cooperative multi-tasking. HINT: Writing to the terminal is done with the speed
of the UART, i.e. 115kBits per second, which is slow in comparison to the speed of the CPU. HINT No.
2: printf does not directly write to the UART, instead it writes to a buffer with a limited capacity (default
is 64 characters).

30 CHAPTER 4. PROGRAMMING WITH THREADS

Explanation Terminating Threads:
A thread can terminate itself as shown below.

THREAD(my_thread, arg) {

for (;;) {

// do something

if (some condition)

NutThreadExit()

}

}

There is no easy way for some thread A to kill another thread B. Nevertheless, you will implement this
functionality in Ex. 41.

4.3 The Terminal

We have introduced the printf and scanf functions already in the last chapter. Here we present a more
convenient way to use the terminal.

Explanation The Terminal Thread :
The BTnut OS helps you to interact with a user via the terminal. To this purpose, a thread is created
that receives input from the UART that is linked with the standard output stream (see 24) and echoes
received characters. This allows you to see what you type in the terminal application running on the host
computer. In summary, this thread implements a simple command line interface to the BTnode. The
following program is an example for using this facility:

#include <stdio.h>

#include <dev/usartavr.h>

#include <sys/thread.h>

#include <sys/timer.h>

#include <hardware/btn-hardware.h>

#include <terminal/btn-terminal.h>

int main(void) {

btn_hardware_init();

btn_led_init(1);

init_stdout();

btn_terminal_init(stdout, "[es-ex3]$");

btn_terminal_run(BTN_TERMINAL_NOFORK, 0);

return 0;

}

After the usual initializations (for an explanation of init_stdout, see page 24), the terminal thread is
initialized with btn terminal init, the first argument links it with the UART of the standard output
stream, the second argument defines the prompt of the command line (you may use any string you like).
Finally, the command btn_terminal_run(BTN_TERMINAL_NOFORK, 0) starts the terminal. The function
never returns, since it reuses the main routine (which is also the main thread) as the terminal thread.

4.3. THE TERMINAL 31

Explanation Creating your own Terminal Commands:
The terminal thread also parses the received string after you press enter and executes a function, if the
string matches to a registered terminal command.

void square(u_char* arg) {

int val;

if (sscanf(arg,"%d",&val)==1) {

printf("The square of %d is %d\n",val,val*val);

}

else {

printf("USAGE: square <value>\n");

}

}

int main(void) {

...

btn_terminal_init(stdout, "[es-ex3]$");

btn_terminal_register_cmd("square",square);

btn_terminal_run(BTN_TERMINAL_NOFORK, 0);

return 0;

}

After (this is important) the initialization of the terminal thread, the command square is registered with
btn terminal register cmd. The first parameter is the string you will have to type to launch the function,
which is given as the second argument. Note that functions which you want to register as a command
must have the signature void <functionname>(char* arg). The function receives the string arg as
an argument. It contains the remainder of the string parsed by the terminal thread, e.g. if you type
"square 7", arg is a pointer to "7".

Exercise 37 Write a program that registers the command create as a terminal command. This com-
mand takes a string argument and creates a thread with this name. This thread periodically prints its
name on the terminal and then sleeps for a second. HINT: A thread can access its own name using
runningThread->td_name, which is a string, i.e. has type u_char*.

Optional Exercise 38 Rewrite the program from Ex. 37 such that the first thread you start sleeps for one
second, the second thread sleeps for two seconds, etc. HINT: For this purpose, you may use the third
argument of the NutThreadCreate to pass the sleep time to the thread. Another alternative would be to use
a global data structure.

Explanation The Nut OS commands:
The BTnut OS also offers sets of predefined terminal commands. To use them, they have to be registered.
Two of these sets with the corresponding header file and the register function is given below:

#include <terminal/btn-cmds.h>

btn_cmds_register_cmds();

#include <terminal/nut-cmds.h>

nut_cmds_register_cmds();

The register commands have to be called after btn_terminal_init and before btn_terminal_run.
btn_cmds_register_cmds provides the led command, nut_cmds_register_cmds provides the nut com-
mand, which has several sub-commands. For example with nut threads, you can print a list of all threads
on your BTnode.

Optional Exercise 39 Rewrite the program from Ex. 37 so that the create command takes a second pa-
rameter specifying the stack size of the thread that is created. Use this command and nut threads to figure

32 CHAPTER 4. PROGRAMMING WITH THREADS

out how much stack is actually used by the threads you create. Add some local variables to these threads
and/or call some dummy functions from these threads to see how this increases the amount of used stack.

4.4 Events

Explanation Sending and Receiving Events:
The coordination (synchronization) of threads can be done using BTnut events. Consider the example
shown below:

#include <sys/event.h>

HANDLE my_event;

THREAD(thread_A, arg) {

for (;;) {

// some code

NutEventWait(&my_event, NUT_WAIT_INFINITE);

// some code

}

}

THREAD(thread_B, arg) {

for (;;) {

// some code

NutEventPost(&my_event);

// some code

}

}

Here we see two threads. Thread thread_A executes some code and then blocks in the NutEventWait
function. It only continues when either an event is posted or the timeout expires. The timeout is specified
in milliseconds with the second parameter. In the example shown above, the timeout is disabled, i.e. an
infinite time is specified with the macro NUT_WAIT_INFINITE.

Exercise 40 Write a program with three threads (main and two additional threads) and a global variable
with initial value 2. The three threads shall execute in turns, which you implement with events. One thread
computes the square of the global variable, the second decrements it by one and the third multiplies it by two.
All threads print the result on the terminal. When the global value has reached a value greater than 10000,
all threads except the main routine terminate themselves. The main routine enters an endless loop.

Exercise 41 Extend the program from Ex. 37 with the terminal command kill that takes the name of a
previously created thread as an argument. The terminal thread shall use an event to inform the selected
thread that it is supposed to kill itself.

Optional Exercise 42 What happens if first an event is posted by some thread A and only afterwards some
thread B does a NutEventWait ? What happens if multiple events are posted before another thread is ready
to receive them? Are the events stored or lost? Write a program to find out.

Optional Exercise 43 What happens if two threads are waiting for the same event? Are both threads woken
up? Do thread priorities play a role? Write a program to find out.

33

Chapter 5

Embedded Debugging

5.1 Introduction

The goal of this tutorial is to get to know the different tools and techniques for embedded debugging
considering the BTnode platform as example.

One of the most compelling problems for anyone programming an embedded system, is to understand what
your system is doing, what resources it’s using and how it interacts with the external world. Bugs occur.
Fixing them is usually easier than finding them! The problem is that embedded code cannot be easily
executed under a debugger, nor can it be easily traced, because of the following circumstances:

• Embedded systems are resource constrained. Some debugging techniques might cause too much
overhead (processing, communication and memory). Applying debugging may obscure the real problem
(Heisenberg effect).

• The embedded processor is connected to peripheral hardware components such as A/D-converters,
timers, communication interfaces, interrupt controllers and general purpose I/O pins. The embedded
programm closely interacts with those components which makes it hard to trace.

• Embedded system often provide very limited access to the resources. If all you have is four LEDs,
debugging will be very hard.

5.2 Tools

Good mechanics have many tools; you can’t fix a car with just a hammer. Like good mechanics, good
programmers need to be proficient with a variety of tools. Each has a place; each has a Heisenberg effect;
each has power.1

Explanation Simulator with source-level debugger : A simulator allows for early debugging and
execution of algorithmic code. It does not require any target hardware. A source-level debugger lets you
step through your code, stop it, and then examine memory contents and program variables.

Explanation In-circuit emulator (ICE) and JTAG debugger : An Emulator emulates the behavior
of the real chip. ICEs allow you to replace the real chip that interacts with I/O components for better
insight. JTAG debuggers directly connect to the real chip instead of replacing it. ICEs and JTAG debuggers
can be used for source-level debugging.

1The ten secrets of embedded debugging: http://www.embedded.com/showArticle.jhtml?articleID=47208538

http://www.embedded.com/showArticle.jhtml?articleID=47208538

34 CHAPTER 5. EMBEDDED DEBUGGING

Explanation Simple printf statements: This is perhaps the most flexible and primitive tool. Printing
out variable values and function entry/exit points allows you to discover how your program is operating.
Unfortunately printf is both clumsy to use (requiring code changes and recompiling) and quite intrusive
because it greatly slows execution.

Explanation Operating system monitors: Operating system monitors display events, such as task
switches, semaphore activity and interrupts.

Others: Profilers, memory testers, execution tracers, coverage testers.

5.2.1 Debugging techniques for the BTnode

Following tools can be used to debug an AVR microcontroller. Some techniques require additional special
hard- and software:

Technique Hardware Software
1 Simulator – AVRStudio / AVaRICE + GDB / SimulAVR + GDB
2 ICE ICE40/ICE50 AVRStudio
3 JTAG debugger JTAGICE (mkII) AVRStudio / AVR insight
4 printf UART Terminal
5 OS monitor UART Nut OS Tracer, Terminal

Optional Exercise 44 Open the AVRStudio and consult the AVR Studio Tools and User Guide.

1. Compare the features and limitations of an Emulator (ICE50) with the ones of a JTAG debugger
(JTAGICE).

2. What is on-chip-debugging (OCD)? Which hardware is required for OCD on the BTnode?

3. What happens with the peripheral components of the µC (UART, Timers, A/D Converter) when you
enter stop-mode for source-level debugging (e.g. when a breakpoint is hit)?

Optional Exercise 45 Consider following table. Which tool(s) is/are most appropriate, in your opinion,
for the given problems? Sometimes all tools can be applied in order find and fix a bug. Some with more,
others with less effort. Justify your answer.

Problem Tool: Simulator/

JTAGICE/printf

Reason

An algorithm that operates from memory to memory

does not behave as expected.

The µC communicates over one of its hardware UART

with the Bluetooth module. In general, the µC sends

a command sequence and parses the reply from the

module. The implementation of this protocol on the

µC is erroneous and needs debugging...

You are implementing a network stack. A series of

function is called (for each network layer) to process

an incoming packet. In your current implementation,

when a packet is received, the µC freezes somewhere

in the processing. You want to find out where.

5.3. AVR SIMULATION 35

5.3 AVR Simulation

In this section you will learn how to use AVR simulation for prototyping and source-level debugging. We
introduce two simulators: simulavr and the AVR Studio Simulator. Unfortunately, both of them are quite
limited, i.e. they only simulate a subset of the AVR peripherals (timers, etc.). As a consequence, applications
that use Nut/OS can not be simulated. The simulator usually breaks in one of the timer interrupt routines.

Exercise 46 Simulavr + AVR-Insight In this exercise you will learn how to start simulavr and how to
connect the AVR-Insight debugger to it.

1. Create a new C file simpleio.c with the following code:

#include <io.h>

void delay(void){

int i;

for(i = 0; i < 1000; i++);

}

int main(void){

DDRF |= _BV(0);

for(;;){

PORTF |= _BV(0);

delay();

PORTF &= _BV(0);

delay();

}

}

2. Compile the file manually with the debug-symbols option (-g):
avr-gcc -mmcu=atmega128 -g -I/usr/pack/btnode-1.0-mo/avr/include/avr simpleio.c -o simpleio.elf

3. Start AVR-Insight:
avr-insight&

4. Start simulavr as a gdb-server:
simulavr -g -d atmega128

The simulator should print out something like: Waiting on port 1212 for gdb client to connect...

5. In order to connect Insight with the simulator, open the gdb-console (View→Console) and enter fol-
lowing commands:

file simpleio.elf

target remote localhost:1212

load

break main

continue

6. Congratulations: now you can step through your code, set breakpoints and watches.

Optional Exercise 47 AVR Studio Simulator

1. AVR Studio needs a different debug format. Compile the code from the last exercise with -gdwarf-2.

2. Open AVRStudio and open your .elf file from the File->Open File menu. A project wizard appears.
Select AVR Simulator as debug platform and ATmega128 as device.

36 CHAPTER 5. EMBEDDED DEBUGGING

3. The simulator initializes and stops at the first instruction. Go to the AVR Simulator Options from
the Debug menu, and set the frequency to 8.00 MHz.

4. In the I/O workspace window on the left side you find all the simulated resources of the AVR. Take
some time to browse through the individual items. Expand the PORTF item.

5. Congratulations: now you can step through your code (F10), set breakpoints and watch how the ports
and registers change in the workspace.

Optional Exercise 48 Profiling printf with AVR-Studio
Printf statements are often used for debugging. Printing out variable values and function entry/exit points
allows you to discover how your program is operating. In this exercise we measure the cycle count of an
example printf statement in order to get the feeling of the overhead.

1. Edit your ”nutsim.c” file:

#include <io.h>

#include <stdio.h>

#include <dev/usartavr.h>

#include <hardware/btn-hardware.h>

int main(void) {

u_long baud = 57600;

btn_hardware_init();

NutRegisterDevice(&APP_UART, 0, 0);

freopen(APP_UART.dev_name, "w", stdout);

_ioctl(_fileno(stdout), UART_SETSPEED, &baud);

printf("UART baudrate = 57600\n");

for(;;);

}

2. Recompile the .elf file. The simulator should automatically restart and load the new file.

3. Step through the code until the yellow arrow is on the printf statement. Expand the processor item in
the I/O workspace. Remember the cycle count.

4. Proceed one step (step over). Compare the cycle counter with the previous values. How many cycles
did it take?

5. Normally printf statements have formatted output. Replace the existing printf statement with:

printf("UART baudrate = %u,%u kbaud\n",

(int)(baud / 1000UL),

(int)((baud - (baud / 1000UL)*1000UL)/100));

6. Compare the cycle count of the formatted printf with the unformatted one.

5.4 The OS-Tracer

Printf is often used for debugging. However, in the previous section, we have seen that this method has a
relatively large overhead. Thus, it is not suitable for tracing frequent events such as interrupts or thread
switches. For such events, the tracer tool is more appropriate.

5.4. THE OS-TRACER 37

Explanation Tracer Tool, Interactive Mode:
The tracer tool stores information about important OS events in memory and prints this information later
on the terminal for analysis purposes. Important OS events include thread switches (due to sleeps, yields,
priority changes, etc.) and interrupts. In addition to the type of event, the exact system time (microsecond
resolution) and additional information (e.g. which thread did a sleep) is stored.
The tracer tool can be used in various different ways. The most simple is the interactive terminal mode.
To activate the tool, use

#include <sys/tracer.h>

btn_terminal_register_cmd("trace",NutTraceTerminal)

as it has been explained in the previous section.

Preparation The current version of the btnut binaries does not flag OS events for the tracer. Therefore
the sources have to be recompiled with the +DNUTTRACER option.

1. Open the file Makedefs located in the folder btnut

2. Uncomment the line DEFS.BTNODE3 += -DNUTTRACER.

3. Recompile the sources (make clean install in folder btnut).

Exercise 49 This exercise is a step-by-step tutorial for using the trace tool. First write a program that
starts the LED thread, then registers the trace terminal command and then starts the terminal thread. Run
this program and continue as follows:

1. Type trace, you will get the output:

[es-ex3]$trace
TRACE STATUS
Mode is OFF
Size is 0
contains 0 elements

SYNTAX: trace [print [<size>]|oneshot|circular|size
<size>|stop|mask [<tag>]]

2. Type trace oneshot and then type trace again. If you have not waited too long between the two
commands, you will get something like this:

[es-ex3]$trace oneshot TRACE mode ONESHOT, restarted
[es-ex3]$trace TRACE STATUS
Mode is ONESHOT
Size is 500
contains 77 elements

SYNTAX: trace [print [<size>]|oneshot|circular|size
<size>|stop|mask [<tag>]]

Typing trace again will give you a similar status except that the contains XX elements shows an
increasing number. When it has reached 500, the Mode changes to OFF again as it was before we typed
trace oneshot, but now contains 0 elements is replaced by is full.

[es-ex3]$trace TRACE STATUS
Mode is OFF
Size is 500
is full

SYNTAX: trace [print [<size>]|oneshot|circular|size
<size>|stop|mask [<tag>]]

3. In the previous step, we have filled the trace buffer with events. We now can have a look at them by
typing trace print 10, which gives you an output like this:

[es-ex3]$trace print 10

TRACE contains 500 items, printing 10 items. TAG
PC/Info Time [s:ms:us]

38 CHAPTER 5. EMBEDDED DEBUGGING

Thread Yield idle 13:524:336 Thread Sleep
LED 13:524:604 Thread Yield idle
13:581:857 Thread Sleep LED 13:582:125 Thread
Yield idle 13:639:392 Thread Sleep LED
13:639:659 Thread Yield idle 13:696:909 Thread
Sleep LED 13:697:205 Thread Yield idle
13:754:442 Thread Sleep LED 13:754:710

In the TAG column, you see the type of the recorded events. In the case shown above, all events are of
type Thread Yield or Thread Sleep, the column Info shows you the name of the thread which has
done a sleep or a yield and the Time column indicates at what time this was done. The time is 0 when
the BTnode is booted.

4. The list of events does not allow you to quickly understand what is really going on. Therefore we
now use the terminal program on the host computer to capture the terminal output in a file. Then we
postprocess the trace file we have created in the previous step using Matlab. Thus start Matlab now. Type
show_trace(’<the filename of the captured terminal output>’), which opens a figure like the
one shown in Fig. 5.1. Be sure to use a separate log file for each trace captured. In this figure, you
can see time on x-axis and three threads on the y-axis.

0 2000 4000 6000 8000 10000 12000 14000

LED

idle

main

Time [ms]

Figure 5.1: Execution of threads for the program listed in Exercise 49.

What you can see is that the BTnode spends most of the time in the idle thread. Periodically, it switches
to the LED thread and a few times, the main thread was active. The LED thread is responsible for the
periodic blinking of the LEDs, it becomes active approximately every 60ms and takes about 300µs to
execute. The main thread is responsible for capturing terminal input and launching the corresponding
commands. Thus if you did not type trace while the buffer was filling, you will see only one spike to
the main line at the very beginning of the trace. Otherwise (as shown in Fig. 5.1) you can see a spike
for every letter of trace plus one when you pressed return. Parsing a keystroke takes about 600µs,
executing the command after pressing enter takes much longer, approximately 6ms. When looking
closely at the last spike, you may note that it actually consists of several spikes. This is due to the
fact, that the trace command prints the status of the trace buffer to the terminal, but cannot do so in
a single shot. It fills the UART buffer until it is full, then yields execution to the idle thread and is
woken up when the buffer has become empty again to write the rest of the output.

5. In the previous step we have seen, that even when the BTnode seems to do nothing really useful, several
threads are executed. To understand a little bit better how this actually works, we now do another trace
capturing in addition to the threads also the occurrence of interrupts. To this purpose type trace mask.

[es-ex3]$trace mask TRACEMASK

5.4. THE OS-TRACER 39

0 Critical Enter OFF
1 Critical Exit OFF
2 Thread Yield ON
3 Thread SetPrio ON
4 Thread Wait ON
5 Thread Sleep ON
6 Interrupt Enter OFF
7 Interrupt Exit OFF
8 Trace Start ON
9 Trace Stop ON
10 User * ON

You get a numbered list of event types followed by either ON or OFF. Typing trace mask 6 redisplays
this list, but now the event type 6, which is the begin of an interrupt service routine is set to ON. Repeat
this for the event type 7. Now take a trace as explained in the previous steps, capture the event list in
a file and display it using Matlab.

250.5 251 251.5 252

Int−TIMER0_OVERFL

Int−UART0_RXCOMPL

Int−UART0_TXEMPTY

LED

idle

main

Time [ms]
516 516.5 517 517.5 518

Int−TIMER0_OVERFL

Int−UART0_RXCOMPL

Int−UART0_TXEMPTY

LED

idle

main

Time [ms]

Figure 5.2: LED thread woken up by the timer interrupt. Left: LED thread woken up by the timer interrupt.
Right: Main thread woken up by UART receive interrupt, causing transmit complete interrupts by echoing
the terminal input.

Looking at Fig. 5.2, left side, you can see how the LED thread is triggered by the timer interrupt
(Int_TIMER0_OVERFL). On the right side of Fig. 5.2, it is shown that the main thread is activated after
the occurrence of a UART receive interrupt (Int_UART0_TXCOMPL). Since the main thread echoes all
received characters to the terminal, two UART transmit complete interrupts occur immediately after
the activation of the main thread.

Exercise 50 The traces captured in the previous example show that most of the time is spent in a thread
called idle, which was not started by our program. What is the purpose of this thread?

Exercise 51 When the tracing of interrupts is enabled, you can see timer interrupts. You can also see that
a thread that sleeps always awakes immediately after these timer interrupts. Figure out the interval of these
timer interrupts and think about what kind of restriction this implies for the NutSleep function. HINT:
Remember that you can specify the sleep time in milliseconds.

40 CHAPTER 5. EMBEDDED DEBUGGING

Explanation Tracing a Particular Piece of Code:
The interactive mode of the tracer tool is very simple to use but it does not allow to trace a particular
piece of code in which you are interested. To do this, it has to be used in a different way.
You may be interested in what a particular function call does. Therefore you would like to start tracing
immediately before this function is executed. You can do this as shown here:

#include <sys/tracer.h>

int main(void) {

// initializations

NutTraceMaskSet(TRACE_TAG_INTERRUPT_ENTER);

NutTraceMaskSet(TRACE_TAG_INTERRUPT_EXIT);

// some code

NutTraceInit(1000,TRACE_MODE_ONESHOT);

// code you want to trace

// some code

}

At the begin of the main routine you set the trace mask using the functions NutTraceMaskSet and
NutTraceMaskClear. You find the macros that describe the types of events you want to trace in the
sys/tracer.h header file. Then you start the trace using NutTraceInit immediately before the code
you are interested in. The first parameter of this function determines the amount of items that are
traced, the second parameter specifies whether tracing should be stopped when the trace buffer is full
(TRACE_MODE_ONESHOT), or whether it should continuously overwrite the entries (TRACE_MODE_CIRCULAR),
until tracing is stopped explicitly. The program shown above now automatically fills the trace buffer. You
can either print it using the trace terminal command, or using the function NutTracePrint, which takes a
single argument that determines how many trace entries shall be printed. If this argument is 0, the whole
buffer is printed.

Exercise 52 Trace the printf function. First use a string that is shorter than the length of the buffer
(default is 64, may be changed using ioctl, see the avr-gcc manual for details), then a string that is longer.
Enable the tracing of interrupts. Explain what you see.

41

Chapter 6

Communication Using Bluetooth

6.1 Introduction

The Bluetooth technology is well suited to provide short-range wireless communications between electronic
devices like e.g. mobile phones, laptops or PDAs. Without the need of a pre-established infrastructure,
portable devices may create links and form Personal Area Networks (PANs).

This chapter addresses simple point-to-point communication between BTnodes. We will mainly concentrate
on the interaction between the microcontroller and the Bluetooth radio and will – as far as possible – make
use of pre-implemented data structures and functions of the BTNut system software. In doing so, the reader
should gain some insight in the use of the thread/event-functionality of the Nut-OS and the low-level packet
assembly routines provided by the BTnut API. To gain a certain confidence and understanding of Bluetooth
communication, you can use the bt-cmd demo application.

We will have to familiarize the reader with certain details of the Bluetooth Specification [3]. In order to
ease searching in the specification, all page numbers given in this tutorial refer to the page numbers of the
PDF-document1.

Section 6.2 presents the basic mechanisms that are used to access the Bluetooth radio capabilities. Therefore
the interface between microcontroller and Bluetooth radio is explained. As an example, we take a closer
look at the inquiry procedure used to discover other nearby Bluetooth devices. In Section 6.3 you will create
wireless connections to other BTnodes and transmit short text messages.

6.2 Discovery of Bluetooth devices

The Atmega128 microcontroller communicates with the Zeevo ZV4002 Bluetooth radio according to the
principles defined in the Host Controller Interface Functional Specification [3].

In the following, we want to send an Inquiry Command to the Bluetooth controller. This command will
cause the radio to enter inquiry mode and search for possible Bluetooth devices within communication range.
The controller will count the total number of responding devices and collect a set of values for every single
device. The value we are especially interested in is the Bluetooth device address of a discovered BTnode.

1We don’t refer to the page numbers printed on the original document, since they are not unique.

42 CHAPTER 6. COMMUNICATION USING BLUETOOTH

Explanation Host Controller Interface HCI :
As depicted, the Host Controller Interface defines signaling and data exchange between the so-called Blue-
tooth host and the Bluetooth controller. The Bluetooth host can be seen as the microcontroller running
the BTnut system software and driving the NutOS UART-driver. The Bluetooth controller is physically
connected to the host system via the UART. The Bluetooth controller is located on the Bluetooth radio
and comprises the HCI firmware, the link manager firmware and the baseband controller. HCI commands
can be sent from the host to the controller to initiate radio communication and access configuration pa-
rameters. On the other hand, the controller uses HCI events to inform the host when something occurs.
Finally, HCI data packets may be transmitted in both directions.

Baseband Controller

Host
Controller
Interface HCI

HCI Events

HCI Data Packets

HCI Commands

UART

HCI Firmware

Link Manager
 Firmware

UART-driver (NUT OS)

Bluetooth Host

BTnut System

Bluetooth Controller

Exercise 53 Each Bluetooth device is characterized by a unique Bluetooth device address. Find the device
address (MAC) of your BTnode. How many bytes are needed to represent a Bluetooth device address?

A HCI packet is defined as shown below.

struct bt_hci_pkt_cmd {

u_char type;

u_char payload[255];

};

The type-parameter is needed to distinguish between command, event and data packets. For our purpose, we
set type=0x01 to define a command packet. The payload-array reserves 255 bytes for the actual command
packet as specified on page 509f of the Bluetooth specification [3]. It starts with a 2 byte OpCode which is
divided into two fields, called Opcode Group Field (OGF) and OpCode Command Field (OCF). Note that
the bit ordering of the packet definition follows the Little Endian format, i.e. the LSB is the first bit sent
over the UART.

Exercise 54 Open the Bluetooth specification on page 510 to figure out how HCI Command Packets are
constructed in general. You will find a detailed description of the Inquiry Command on pages 531 and 532.

6.2. DISCOVERY OF BLUETOOTH DEVICES 43

Figure out, what the single entries of the following bt_hci_pkt_cmd mean:
struct bt_hci_pkt_cmd pkt;
pkt.type=0x01;
pkt.payload[0]=0x01;
pkt.payload[1]=0x04;
pkt.payload[2]=0x05;
pkt.payload[3]=0x33;
pkt.payload[4]=0x8b;
pkt.payload[5]=0x9e;
pkt.payload[6]=0x05;
pkt.payload[7]=0x05;

In particular, how long will this inquiry last and what is the maximum number of Bluetooth devices that can
be found like this? HINT: The general inquiry access code (GIAC) is 0x9E8B33 (see page 213 [3]).

A function inquiry that sends an inquiry and displays the addresses of the found Bluetooth devices should
look as follows: (Don’t be confused if you are not familiar with all data types and functions – they will be
explained later!)

struct btstack* stack;

void inquiry (u_char* arg){

//define a HCI command packet

struct bt_hci_pkt_cmd pkt;

// assemble the single bytes of the struct pkt (see previous exercise!)

// INSERT YOUR CODE HERE

// INSERT YOUR CODE HERE

// define a "command_response" structure

struct bt_hci_cmd_response wcmd;

//array for the storage of the answers of max. 10 devices

struct bt_hci_inquiry_result inquiry_result[10];

//initialize the cmd_response-structure

wcmd.ogfocf= ((0x01<<8)|(0x01<<2));

wcmd.cmd_handle= 0xFFFF;

wcmd.response=0;

wcmd.ptr= &inquiry_result;

wcmd.block=0;

//register the wcmd in the WaitQueue of the btstack

_bt_hci_setWaitQueue(stack,&wcmd);

//send the command packet ...

_bt_hci_send_pkt(stack,(u_char*)&pkt);

printf("Starting inquiry\n");

//wait for the inquiry to complete

// INSERT YOUR CODE HERE

// INSERT YOUR CODE HERE

printf("Inquiry done! \n");

// print inquiry_result[] to the terminal

// INSERT YOUR CODE HERE

// INSERT YOUR CODE HERE

44 CHAPTER 6. COMMUNICATION USING BLUETOOTH

}

First of all, we need a pointer to a variable of struct btstack-type for our function to work properly.
This variable stores data for numerous devices, buffers and internal states. We need this structure for the
definition of the UART-transport. Furthermore, the btstack structure stores a list of ”signatures” of all
uncompleted commands – or more precisely – a list of pointers to bt hci com response-structures.

Explanation struct bt hci cmd response :

struct bt_hci_cmd_response {

u_short ogfocf;

u_short cmd_handle;

long response;

void *ptr;

HANDLE block;

};

The ogfocf is used to store the complete OpCode of the pending command. Setting the cmd handle to
0xFFFF indicates that this command is not referring to an open baseband connection. When events return
as a response to our Inquiry Command, the number of found devices will be stored in the component long
response. The addresses of the found devices (together with several other values) will be stored at the
location where the void *ptr is pointing. To indicate that our results are available, the HANDLE block
will be #SIGNALED.

Explanation struct inquiry result :

struct bt_hci_inquiry_result {

bt_addr_t bdaddr;

u_char page_scan_rep_mode :4;

u_char page_scan_period_mode :4;

u_long cod;

u_short clock_offset;

short rssi;

};

This struct stores all the collected data of one single discovered Bluetooth device. We are only interested in
the bt_addr_t-component. As you already found out, the bt_addr_t-type is equivalent to a u_char[6].

So we only send the Inquiry with the bt hci send pkt-function, pass an address to a bt hci setWaitQueue-
function and the result will be ”automatically” stored in our prepared variables? Who is receiving and
handling all the incoming events from the Bluetooth radio?

Answer: All the work is done by a THREAD called ”BTStack”. This THREAD ...

• invokes a blocking bt hci get pkt()-function.

• searches for a matching struct bt hci cmd response if an event arrives.

• dumps the payload of the event correctly.

• invokes a EventPostAsync() for the respective HANDLE.

• performs a final NutThreadYield().

You should create the ”BTStack”-THREAD in your main program by calling

stack = bt_hci_init(&BT_UART);

6.3. CREATING CONNECTIONS AND SENDING DATA PACKETS 45

This function call simultaneously initializes the UART to the Bluetooth radio. Additonally, you should
include the following header-files to ensure availability of all the functions and data types used so far:

#include <hardware/btn-hardware.h>

#include <terminal/btn-terminal.h>

#include <stdio.h> // freopen

#include <dev/usartavr.h> // NutRegisterDevice, APP_UART, UART_SETSPEED

#include <bt/bt_hci_dispatch.h> // for the setWaitQueue command

#include <sys/event.h> // for NutEventWait

#include <bt/bt_hci_cmds.h>

Exercise 55 Complete the inquiry function and register the command inquiry as a terminal command.
Don’t forget to initialize your hardware with btn_hardware_init() and btn_hardware_bt_on(). After
having successfully implemented your Inquiry command, find out which BTnodes you have discovered!

Exercise 56 Use the OS-Tracer from Chapter 5 to trace your Inquiry command and see how the BTStack
fetches the single events. You can start the tracer with trace oneshot and stop it with trace stop. Read on
page 532 in [3] about which event packets may arrive at the Bluetooth host and identify those events in the
trace plot. Hint: For this you will need to temporarily disable the LED thread.

6.3 Creating Connections and Sending Data Packets

One of the parameters we send to the Bluetooth Controller with our Inquiry command was the general
inquiry access code (GIAC). The Bluetooth Controller rearranges the Inquiry command packet in such a
way, that the packet sent over the air begins with this GIAC. Actually, all transmissions over the physical
channel have to begin with such an access code.

With the reception of a Bluetooth address we gained some knowledge that we can exploit to access the channel
once more and create a connection to another device: We have to pass this address as a parameter to a
”Create-Connection-command” which in turn causes the Bluetooth Controller to initiate the Page procedure.
During this procedure, the Link Manager on the Bluetooth Controller tries to establish a link level connection
to another device. Therefore, messages beginning with a device access code DAC are generated. The DAC
is derived from the paged device’s Bluetooth address.

Explanation Terminal command uartdebug:
The terminal command bt uartdebug 1 displays all HCI traffic on the UART. Bytes starting with a ”w”
are sent to the Bluetooth Controller, those starting with a ”r” are received from the Controller. Events
and Commands can be interpreted as follows:

bytes 1 | 2 | 3 | 4 | 5

HCI command packet: 1 | Opcode |parameterlength| parameter

HCI event packet: 4 | event code |parameterlength| parameter

Exercise 57 Compile and upload the bt-cmd application. Type bt uartdebug 1. Start an bt inquiry and
create a new connection to an arbitrary BTnode using the command bt con. Identify the impinging events
that are caused by the bt con-command! Analyze the received ConnectionCompleteEvent to figure out if we
established a synchronous (SCO) or asynchronous (ACL) connection. Hint: HCI events are listed starting
on page 695 [3] according to their Event Code.

Now you should be connected with another BTnode i.e. both radios should be synchronized in terms of slot
timing, frequency hopping sequence and access code to the physical channel. You can check your connections
with the contable-command. As you see, a connection handle has been assigned to your connection. Those
handles are used to identify connections between Bluetooth devices.

Once a connection is established, we want to send simple text messages to another BTnode.

46 CHAPTER 6. COMMUNICATION USING BLUETOOTH

Explanation Logical Link Control and Adaptation Protocol L2CAP :
The Logical Link Control and Adaptation Protocol (L2CAP) resides directly above the Host Controller
Interface (HCI). At the L2CAP layer, communication is based on so-called channels. This abstraction
allows multiplexing and de-multiplexing of multiple channels over a shared link. Furthermore, L2CAP
carries out segmentation and reassembly of application data for higher protocol layers. The figure shows a
L2CAP basic information frame (B-frame) packet, starting with 2 bytes for the length of the information
payload. Here, the length indicates the size of the payload in bytes. Bytes number 3 and 4 represent the
channel ID. The rest of the packet is reserved for the actual payload. Clearly, the size of the payload is
limited. But for the short messages we want to send in this tutorial we won’t get into conflict with those
payload limits.

HCI ACL Data Packet

L2CAP B-Frame Packet

Bluetooth Radio

Baseband

HCI

L2CAP

Audio Link Manager (LM)

Connection Handle
 PB
Flag

 BC
Flag Payload Total Length

LSB = 0 3912 363228242016

PayloadType

4 8

Length Channel
 ID Information Payload

LSB = 0 16 32

Also an HCI asynchronous connection-oriented (ACL) data packet is illustrated. To distinguish between
HCI commands, events and data packets, the type parameter has to be set. The packet boundary PB flag is
used to indicate the first packet (PB=2) or a continuing fragment packet (PB=1) of a higher layer message.
By setting the broadcast flag BC=0 a point-to-point message is defined. Finally, the payload length (again
in bytes) concludes the header of the HCI ACL Packet. The body of the HCI ACL Packet consists of the
L2CAP B-Frame Packet in our example. More information about L2CAP can be found in [3] on pages
963ff.

In the following, we want to write a transmit function which sends a HCI ACL Data packet of the form

u_char hci_acl_pkt[total_size];

hci_acl_pkt[1] = ... ;

hci_acl_pkt[2] = ... ;

...

hci_acl_pkt[total_size] = ... ;

We will send this packet using the function bt hci send acl pkt with the following signature:

bt_hci_send_acl_pkt(struct btstack *stack, u_short con_handle, u_char pb_flag,

u_char bc_flag, u_short payload_total_length, struct bt_hci_pkt_acl *pkt);

As you can see, this function automatically sets the entries of the HCI ACL Packet header. However, it is

6.3. CREATING CONNECTIONS AND SENDING DATA PACKETS 47

still necessary to allocate memory (total size) for all the entries of the hci acl pkt-packet, although the
first entries don’t have to be specified.

Exercise 58 Copy the bt-cmd-application and add a new function called transmit. Register this function
as a terminal command that takes a connection handle, a channel ID and a string-message as arguments.
Define a hci acl pkt packet that allocates enough memory for a complete HCI ACL packet with an information
payload of 20 characters and transmit it. Hint: You don’t have to know any details about the bt hci pkt acl
-struct. Just cast your hci acl pkt packet accordingly!

In order to receive short messages, the following receive-function has to be defined:

struct bt_hci_pkt_acl* receive(void *arg, struct bt_hci_pkt_acl *pkt, bt_hci_con_handle_t con_handle,

u_char pb_flag, u_char bc_flag, u_short len, u_long t_arrive)

{

u_char* l2cap_hdr = pkt->payload;

u_char* l2cap_data;

u_short chan_id;

chan_id = l2cap_hdr[2] | (l2cap_hdr[3] << 8);

l2cap_data = &l2cap_hdr[4];

printf("message received on channel %d: %s\n", chan_id, l2cap_data);

return pkt;

}

If you now define the packet

u_char acl_pkt[120];

a register the receive-function as a callback

bt_hci_register_acl_cb(stack, receive, (struct bt_hci_pkt_acl*)acl_pkt, NULL);

messages sent to your BTNode will be displayed automatically on the terminal.

Exercise 59 Test your transmit-function by sending a short message to a SUPERVISOR-node that uses a
preloaded application. Use channel 65 for sending this message. If you have implemented everything corretly
so far, you will receive an acknowledgment from the SUPERVISOR-node immediately.

Optional Exercise 60 Check if some of your neighbors have already finished exercise 59. Try to commu-
nicate with another group doing this tutorial. Optionally, try to combine commands from bt-cmd such as
name, rname, role, roleset with transmit to get status information from other nodes.

48 CHAPTER 6. COMMUNICATION USING BLUETOOTH

49

Chapter 7

Interfacing to Handheld Devices

7.1 Introduction

In addition to the regular BTnode hardware a cellular phone with a Bluetooth interface is required for
successful completion of this tutorial.

Figure 7.1 shows an overview of the Bluetooth protocol stack. On top of the Host Controller Interface
(HCI) and the Logical Link Control and Adaptation Layer Protocol (L2CAP) the Bluetooth stack provides
the RFCOMM protocol which emulates a serial port connection. Over such a RFCOMM connection basic
Attention Commands (AT Commands) can be sent to control a cell phone. The topic of this tutorial covers
setting up an RFCOMM connection to a cell phone and sending AT Commands to make the phone dispatch
an SMS message.

Learning target of this tutorial is familiarizing with the Bluetooth Protocol Stack and working with standard
protocols.

7.2 RFCOMM

Bluetooth is a wireless communication service sending in the 2.4 GHz Band. It is based on a centralized
network topology. Nodes communicating with each other form a piconet that consists of one master and at
most 7 slaves. The master initiates the transmission and the slaves respond to it. To achieve robustness
against interference Frequency Hopping is applied. Once every 0.625ms the frequency is changed. Therefore
transmission is partitioned into time slots of 0.625ms length. Bluetooth specifies two types of transmission
schemes that can be established between different devices.

50 CHAPTER 7. INTERFACING TO HANDHELD DEVICES

Explanation Synchronous Connection-Oriented (SCO): The SCO link provides a circuit-switched
connection between the master and a single slave of the piconet. The service is symmetric and requires
reservation of time slots at regular intervals. Therefore the master sends SCO packets at regular inter-
vals. The specific SOC slave is allowed to respond in the subsequent time slot. SOC packets are never
retransmitted therefore it is an unreliable service. It is mostly used for voice applications.

Explanation Asynchronous Connection-Oriented (ACL): The ACL link provides a packet-switched
connection between master and all active slaves of a piconet. A slave is only allowed to transmit an
ACL packet if it has been polled by the master in the previous time slot. The ACL link uses a fast
acknowledgment and retransmission scheme to guarantee reliability. Since no time slots are reserved for
transmission, this type of communication is usually used for non time-critical applications.

Figure 7.1: The Bluetooth Protocol Stack

The Logical Link Control And Adaption Protocol (L2CAP) has been discussed extensively in section 6.3.
The focus of this tutorial is on the higher-level protocols and their application. As explained in section 6.3
the Bluetooth address is needed to establish a connection to a remote device.

Exercise 61 Find out the Bluetooth device address of your cell phone. This can be done in two ways:

• Some manufacturers put a tag with the address printed on it on the back of the phone where the battery
is inserted. The address is 12 digits long, hexadecimal formatted and usually indicated by the term BD
ADDR.

• As discussed in section 6.2 Bluetooth devices can be discovered using the Inquiry Command. The
application bt-cmd located in the folder app/bt-cmd/ provides all the necessary terminal commands to
determine a device’s Bluetooth address:

1. Compile and burn the file bt-cmd.c.

2. Turn on the Bluetooth radio of your cell phone and make the phone traceable. The two settings
usually have to be turned on separately since this is a security mechanism to hide the phone’s
Bluetooth address.

3. Open a terminal and start an inquiry. This will give you a couple of Bluetooth addresses.

7.2. RFCOMM 51

4. Now you need to find out which address belongs to your phone. Use the command bt rname to read
the name of a remote device. You can edit the name of your phone in the phone’s Bluetooth setup.
The way to do that depends on the phone’s menu navigation. Some phones provide a separate
menu item for Bluetooth others include it in Setup->Bluetooth or Connections->Bluetooth
or a combination of them Setup->Connections->Bluetooth or even differently.

Explanation Radio Frequency Communication (RFCOMM): RFCOMM is a simple transport pro-
tocol that emulates a serial interface (RS232) over an L2CAP link. Up to 60 simultaneous connections
between two Bluetooth devices are supported.

Explanation Pairing : Pairing is a security mechanism built into Bluetooth to prevent unauthorized
connections. At the first connection attempt, connection keys of 128bit length are generated out of the
Bluetooth addresses of the devices and some random number. These keys are then stored for further
interaction. To safely transmit the connection keys at this very first connection set up, an initializing key
has to be generated which in turn is calculated out of some random number, one of the Bluetooth addresses
and the Bluetooth PIN-code.
If for example a connection between two cell phones is being established, then first user A is asked to enter
a PIN-code (can be arbitrary) to its phone. This code is then sent to B’s phone. B is asked to enter a
PIN-code as well which is sent back to A’s phone. If the two PIN-codes match, then a trusted pair is
formed.

Preparation The current version of the btnut binaries is not compatible with connections to cell phones.
Therefore a patch has to be applied to the sources.

1. Open the file bt_rfcomm.c located in the folder btnut/btnode/bt/

2. Search for case BT_RFCOMM_MSC_CMD and insert the instruction NutSleep(1); on the following line.

3. Compile the sources (make install).

Exercise 62 Establish an RFCOMM connection to your cell phone on channel 1. For this purpose upload
the demo application rfcomm-cmd to the BTnode. It is located in the folder app/rfcomm-cmd. The following
terminal commands will be needed:

• rfsession opens a connection

• rfdiscon closes a connection

To find out how to use the commands simply type the command and hit Enter. This should show you the
usage. Don’t panic if an error occurs during connection setup. It is nothing unusual. HINT: During the
pairing process, the BTnode sends the default hard coded PIN-code 1234.
Upon successfully creating the connection, the following line is printed to the terminal.

RFCOMM Connect on dlci 2...

At this point no more functionality is provided so just close the connection. HINT: The connection handle
DLCI of a connection on channel 1 is always 2.

If you have constant problems setting up the RFCOMM connection, use a longer sleep period in the prepa-
ration step e.g. NutSleep(500).

The following functions from the bt/bt_rfcomm.h library have been used in the previous exercise to open
and close an RFCOMM connection. They will be needed in exercise 63.

52 CHAPTER 7. INTERFACING TO HANDHELD DEVICES

Explanation bt rfcomm start session:

u_char bt_rfcomm_start_session(

bt_addr_t bt_addr,

u_char page_scan_rep_mode,

u_short clock_offset);

This function opens an L2CAP channel to a remote device if it has not been opened yet.
The argument bt_addr is the Bluetooth address of the remote device. For the other two arguments a 0
can be passed on to the function if no other knowledge available.
The function returns 0x00 if channel set up was successful.

Explanation bt rfcomm connect :

u_char bt_rfcomm_connect(

u_char channel_nr,

BT_RFCOMM_CON_CB,

BT_RFCOMM_RCV_CB,

BT_RFCOMM_LINE_CB,

BT_RFCOMM_CREDIT_CB,

u_char credit_limit,

void *cb_arg)

This function establishes an RFCOMM connection on the channel specified by channel_nr.
BT_RFCOMM_CON_CB, BT_RFCOMM_RCV_CB, BT_RFCOMM_LINE_CB and BT_RFCOMM_CREDIT_CB are callback
functions. Use the value 10 for credit_limit and the NULL pointer for the callback argument cb_arg.
The function returns 0x00 if connection set up was successful.

Explanation bt rfcomm disconnect :

u_char bt_rfcomm_disconnect (u_char dlci)

This function closes an RFCOMM connection. It expects the connection handle dlci as argument and
returns 0x00 if the connection was successfully closed.

Explanation Callback Function: Callback functions are often used in protocol programming. The
higher layer calls a lower layer function passing a function pointer as argument to it. This allows the lower
layer to execute a function that is defined on a higher layer.

Higher Layer

Lower Layer

Main Program Callback Function

Main Loop Registration Function

Higher Layer

Lower Layer

Main Program Callback Function

Main Loop Registration Function

calls

calls

7.3 AT Commands

At the end of this section you will be able to send SMS messages from the BTnode. As shown in section 7.2
an RFCOMM connection can be established between a BTnode and a cell phone. Over this link, Attention

7.3. AT COMMANDS 53

Commands (AT Commands) can be sent (see the Bluetooth stack, figure 7.1).

Explanation AT Commands:
Originally, the AT Commands were developed as a specific programming language for dialup modems.
Back in the early days of Microprocessors when the Apple II was booming, users had to dial the phone
manually and use an acoustic coupler for modem connection. Although internal modems did not have this
shortage, they lacked the ability of being universal, since a different hardware design was needed for every
computer bus. A more modular approach was an external modem connected to the widely available RS232
interface. It was then, when Dale Heatherington came up with the trailblazing idea to develop an external
modem that was able to receive commands over the RS232 data line. Hence the Hayes Command Set or
AT Commands were created.
Mobile phone manufacturers in one way or another have adopted this command set for the built-in modems.
Those modems can be accessed via Bluetooth, Infrared, USB cable or RS232 cable connection. Most of
a cell phone’s basic functionality AT Commands e.g. sending an SMS message are specified in [2] and
standards referenced in there. However there are also vendor specific commands.
The standard AT Command format consists of the Command itself followed by a carriage return. Four
different types of commands exist [6]:

The Set Format It is used to change settings of the mobile phone.

AT<command>=<parameters><CR>
where AT notifies the built-in modem that a command is being entered

<command> the name of the command being entered
<parameters> the values to be used by the command
<CR> the carriage return "\r"

The Execute Format It is similar to the Set Format but the Execute Format usually does not
require any parameters and is used to obtain information about the mobile phone.

The Read Format It is used to read current settings.

AT<command>?<CR>

Command Help Checks whether the command is available and returns the range of the param-
eters.

AT<command>=?<CR>

However some commands such as the send SMS command require a special line delimiter.

As mentioned in the explanation, AT Commands can be treated just like data packets that have to be sent
over an RFCOMM channel. Therefore the following function can be used.

Explanation bt rfcomm send :

u_char bt_rfcomm_send (u_char dlci, u_char *data, u_short length)

This function sends data over an existing RFCOMM channel. It expects the connection handle dlci, the
data packet and its length as arguments and returns 0x00 if the sending process was successful.

Exercise 63 The goal of this exercise is to send some basic AT Commands from a BTnode to a cell phone.

1. Create a new source file and insert the contents of the rfcomm-cmd application that you used in the
previous exercise.

54 CHAPTER 7. INTERFACING TO HANDHELD DEVICES

2. Insert the callback function definitions and the other lines printed below.

#define MIN_CREDITS 10

#define MAX_CREDITS 40

void rcv_cb(u_char dlci, u_char * payload, u_short len, void *arg)

{

u_short idx;

if (len > 0) {

printf("\n");

for (idx = 0; idx < len; idx++)

printf("%c ", payload[idx]);

}

}

void con_cb(u_char dlci, u_char type, void *arg)

{

if (type == BT_RFCOMM_CONNECT) {

printf("RFCOMM Connect on dlci %d...\n", dlci);

bt_rfcomm_send_credits(dlci, MAX_CREDITS - BT_RFCOMM_DEF_CREDITS);

} else {

printf("RFCOMM Disconnect on dlci %d...\n", dlci);

}

}

void line_cb(u_char dlci, u_char flags, void *arg)

{

printf("rfcomm Line status has changed: dlci: %d, flags: %02x\n", dlci, flags);

}

void credit_cb(u_char dlci, u_char credits, void *arg)

{

printf("rfcomm Credits running low for dlci %d. Credits remaining: %d\n", dlci, credits);

printf("rfcomm Send new credits: %d\n", MAX_CREDITS - credits);

bt_rfcomm_send_credits(dlci, MAX_CREDITS - credits);

}

3. Write a function that opens an RFCOMM connection to a cell phone on channel 1 using the
bt_rfcomm_start_session and bt_rfcomm_connect functions. Include some delay after each func-
tion call, e.g. NutSleep(1000). HINT: For the callback arguments pass the names of the copied
functions.

Afterwards send some general AT Commands (see below) and close the RFCOMM connections using
the function bt_rfcomm_send in the former and the function bt_rfcomm_disconnect in the latter
case. Parameter of the function should be the Bluetooth address. HINT: Include some delay after
each AT Command, e.g. NutSleep(1000).

Register this function as a terminal command. HINT: Registering terminal commands has been intro-
duced in section 4.3. Besides, it is documented in the header file btn-terminal.h, which can be looked
up in the BTnut API.

AT Determines the presence of a phone. Returns either OK or ERROR.
AT+CGMI Request Manufacturer Identification
AT+CGMM Request Model Identification
AT+CGSN Request Product Serial Number Identification

4. Compile and upload your program. Open a terminal to observe the output.

7.4. SENDING AN SMS MESSAGE USING AT COMMANDS 55

7.4 Sending an SMS Message using AT Commands

There are two ways to ways to send SMS messages using the AT Commands. On the one hand, there is the
simple SMS text mode [5] where you can send the message as plain text:

1. AT+CMGF=1 Set to text mode.
2. AT+CMGS="<phone number>" Send the recipient’s phone number in international format

i.e. +41. . .
3. <message> Send the message followed by the special line delimiter defined as

0x1A in the ASCII code.

On the other hand, there is the more complicated protocol data unit (PDU) mode. Since the text mode is
not supported by every phone, this tutorial only focuses on the PDU mode. The PDU for SMS messaging
is assembled as follows.

00 25 00 0B 91 14 77 14 36 21 F6 00 00 1A 47 79 B9 4C 4F BB CF 73 90 59 FE 6E 83 E8 E8 32 48 48 75 BF C9 65 17

• length of the SMS-carrier address: 00 selects the number stored on the phone’s SIM card.

• message flags: use 25

• message reference number: 00 lets the phone set the reference number.

• length of the destination address (number of digits in hex format): 0B

• format of the destination address: use 91 for international format i.e. +41. . .

• destination address: each digit of the phone number represents half of a Byte. Therefore if the length
of the phone number is odd, a trailing F has to be added to complete the last Byte. The destination
address is generated out of the phone number by flipping every Byte’s lower and upper half. So
the destination address from the example represents the phone number 41774163126. The + sign is
omitted.

• protocol identifier: use 00

• data coding scheme: use 00

• length of the original message: this is the number of characters (at most 160) of the message string
including spaces in hex format.

• encoded message: the original message is coded using a 7bit ASCII character set. The stream of 7bit
characters is then encoded into a Byte stream to form the encoded message. The coding scheme is
depicted in the following formalism.

Definitions
length of message string n
element of message string k, 0 ≤ k ≤ n− 1
character k X = X6 . . . X0

character k + 1 Y = Y6 . . . Y0

Encoding
if (k + 1) mod 8 6= 0 Yk mod 8 . . . Y0︸ ︷︷ ︸

k mod 8+1[bit]

X6 . . . Xk mod 8︸ ︷︷ ︸
7−k mod 8[bit]︸ ︷︷ ︸

1Byte
else NULL

Using this coding scheme on the message “Greetings from the BTnode.” should result in the Byte
stream shown in the example.

56 CHAPTER 7. INTERFACING TO HANDHELD DEVICES

The PDU is of type string i.e. address lengths for example have to be converted to hex strings. The message
is sent in PDU mode using the following commands:

1. AT+CMGF=0 Set to PDU mode (set by default).
2. AT+CMGS=<PDU length> Number of Bytes of the PDU minus one since the leading 0x00

does not count. In the example it were AT+CMGS=36.
3. <PDU> Send the PDU followed by the special line delimiter defined as

0x1A in the ASCII code.

Optional Exercise 64 In this exercise you are asked to implement the coding of the message as specified
in the PDU mode. It is a difficult exercise. However such problems quite commonly have to be solved in
embedded programming in order to comply with the different interfaces. Since this implementation is needed
in the next exercise a sample solution is provided below.
Add another function to your source file that implements the 7 to 8 bit ASCII encoding. It should take the
message string and a pointer to an allocated array for the encoded string as input parameters.

int character_value(char character)

{

const char alphabet[128] = {’@’, ’@’, ’$’, ’@’, ’@’, ’@’, ’@’, ’@’, ’@’, ’@’, ’\n’, ’@’, ’@’,

’\r’,’@’, ’@’,’@’, ’_’, ’@’, ’@’, ’@’, ’@’, ’@’,’@’, ’@’, ’@’, ’@’,’@’, ’@’, ’@’, ’@’,

’@’,’ ’, ’!’, ’"’, ’#’, ’@’, ’%’, ’&’, ’\’’, ’(’, ’)’,’*’, ’+’, ’,’, ’-’, ’.’, ’/’,

’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’, ’?’, ’@’,

’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’, ’P’, ’Q’,

’R’, ’S’,’T’, ’U’, ’V’, ’W’, ’X’, ’Y’, ’Z’, ’@’, ’@’, ’@’, ’@’, ’@’, ’@’, ’a’,’b’,

’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’,’p’, ’q’, ’r’, ’s’,

’t’, ’u’, ’v’, ’w’, ’x’, ’y’, ’z’, ’@’, ’@’, ’@’,’@’, ’@’};

int i;

for(i=0;i<128;i++){

if(character == alphabet[i]){

return i;

}

}

return -1; //no valid character

}

int bin2int(char * binary)

{

int i;

int sum = 0;

int length;

length = strlen(binary);

for(i=0;i<length;i++){

if(binary[i] == ’1’){

//sum += (int)pow((double)2,(double)(length-1-i));

sum += 0x01<<(length-1-i);

}

}

return sum;

}

void process_message(char * message_str, char * message)

{

char buffer[8]="\0";

int length;

int i;

7.4. SENDING AN SMS MESSAGE USING AT COMMANDS 57

int character = -1;

char base[8]="\0";

char carry[8]="\0";

char rdbuffer[8]="\0";

//init

message_str[0] = ’\0’;

length = strlen(message);

if(length<=15){

strcat(message_str, "00000");

} else {

if(length>160){

length = 160;

}

strcat(message_str, "0000");

}

itoa(length, buffer, 16); //convert integer to hex string

strcat(message_str, buffer);

for(i=0;i<=length;i++){

if(i == length){

if(base[0] != ’\0’){

character = bin2int(base);

itoa(character, base, 16);

if(strlen(base)==1){

base[1]=base[0];

base[0]=’0’;

base[2]=’\0’;

}

strcat(message_str, base);

}

break;

}

character = character_value(message[i]);

if(character != -1){

strcpy(buffer,"0000000");

itoa(character, rdbuffer, 2);

strcpy(buffer+7-strlen(rdbuffer), rdbuffer);

if(i != 0 && i%8 !=0){

strncpy(carry, buffer+7-i%8, i%8);

carry[i%8] = ’\0’;

strcat(carry, base);

character = bin2int(carry);

itoa(character, carry, 16);

if(strlen(carry)==1){

carry[1]=carry[0];

carry[0]=’0’;

carry[2]=’\0’;

}

strcat(message_str, carry);

strncpy(base, buffer, 7-i%8);

base[7-i%8] = ’\0’;

} else{

strcpy(base, buffer);

}

} else{

//ERROR: Not a valid character

}

58 CHAPTER 7. INTERFACING TO HANDHELD DEVICES

}

}

Exercise 65 In this exercise you are asked to implement functionality to completely assemble a PDU of an
SMS message and to send this PDU over RFCOMM to your cell phone.

1. Add another function to your source file. This function should take the recipient’s phone number and
the message string as input parameters.

2. In this function assemble the PDU. Use the function implemented in the previous optional exercise or
the sample solution for message encoding.

3. Also insert the code for the necessary AT Commands to make the cell phone dispatch the SMS message.
Insert a wait e.g. NutSleep(5000) after sending the PDU if you would like to observe the feedback
from the phone.

4. Call this function in your code after you have created a connection to your cell phone.

HINT: These string operators can be useful: strlen, strcat and strcpy. Look up on the internet on how
to use them. HINT 2: The standard library function itoa can be used to convert integer to string. HINT
3: Include the necessary libraries.

Explanation user input :

u_char user_input(FILE* stream, u_char *buffer, u_char count);

This function reads user input from stream.
It stops after a newline or count-1 characters have been read. The argument stream can for example be
the terminal i.e. stdout. The parameter buffer is a pointer to a buffer where the input is received. It has
to be allocated with enough space. The input is always null terminated.
The function returns the length of the input string in the buffer.

Optional Exercise 66 Create a simple user interface to input the message and recipient’s phone number
and if desired the Bluetooth address of the sending phone through the terminal. Use the user_input function.

59

Appendix A

Software Versions Used

The Embedded Systems lecture held in spring 2006 at ETH Zurich used the following software versions:

AVR Studio 4 v412SP1 build462

Silabs CP2101 USB to UART Bridge 20050102

WinAVR 20060125

doxygen 1.4.6

Java 2 SDK 1.5.0_06

RXTX-2.0-7pre1

javax_comm-2_0_3-solsparc

eclipse 3.1.2

org.eclipse.cdt.sdk-3.0.2

easyshell-1.2.0

ZOC Terminal 5.0.6

Emacs 21.2

Matlab 7.1r14

60 APPENDIX A. SOFTWARE VERSIONS USED

61

Appendix B

Solutions

Chapter 2 – First Steps in BTnode Programming

Solution 1 The external memory is connected to Port A (address and data bus) and Port C (address bus)
as well as to three pins of Port G that are assigned WR*, RD* and ALE functions. A trandparent D-type
latch is used to multiplex Port A in order to save IO space at the cost of longer access times. The BTnode
rev3 further uses two pins of Port B (PB7 and PB6) to bank switch 4 banks of 60 kbytes external memory
(the processor can only make use of one bank at a time).

The LED/power latch is attached to Port C. This allows to multiplex the address bus and the latch used for
the LEDs and power/radio configuration onto Port C. It is controlled via pin PB5 (LATCH SELECT).

Pin Function
PC0 Blue LED
PC1 Red LED
PC2 Yellow LED
PC3 Green LED
PC4 ON VCC IO
PC5 ON VCC CC
PC6 ON VCC BT
PC7 RESET BT

The first problem from this hardware setup is that the software has to keep track of the states of the latch
outputs since it is impossible to inquire the current latch state at the port outputs in software. The second
problem is that the routine for driving the latch should not be interruptible yet it has to be short so that it
does not interfere too much with other software components timing requirements.

Solution 2 Project setup in Eclipse follows the menu functions and is straightforward.

Solution 3 The indexing function is a very powerful tool within Eclipse. It is much faster than global search
and can discriminate definitions, declarations and references.

Solution 4 The BTnut system software supports scheduling of different patterns at the LEDs, a simple, yet
powerful userinterface on embedded systems.

Solution 5 The Content Assist function is yet another powerful feature when using Eclipse. It allows to
quickly navigate different library functions and gives quick hints to their correct usage/syntax. Use it to add
an additional LED pattern to a simple BTnut application:

// hardware init
btn_hardware_init();

62 APPENDIX B. SOLUTIONS

Figure B.1: Use the Eclipse menues to navigate the the new projects wizard.

btn_led_init(1);
btn_led_add_pattern(BTN_LED_PATTERN_HALF, 0, 10, BTN_LED_INFINITE);

Solution 6 Not yet.

Solution 7 The Atmel AVR is a family of simple yet very versatile microcontrollers based on an 8-bit RISC
core running single cycle instructions. AVR instructions are tuned to decrease the size of the program whether
the code is written in C or Assembly.

The AVR Libc implements simple fixed point arithmetic functions using commands from the AVR instruction
set such as: lds, xor or fmul.

Due to it’s simple core architecture mathematical operations requiring complicated processor hardware such
as multiply and divide are omitted. However there are specialized libraries available that implement sets of
mathematical functions (fixed point anf floating point) or even cryptography on the AVR architecture.

Some examples with online resources are:

• mikroPascal for AVR

• mikroBasic for AVR

63

• Procyon AVRlib

Solution 8 Not yet.

Solution 9 Not yet.

Solution 10 You should see the following output:

C:\Documents and Settings\es2005>avr-as --version
GNU assembler version 2.15 (avr) using BFD version 2.15 + coff-avr-patch (20030831)

C:\Documents and Settings\es2005>avr-gcc -v
Reading specs from C:/WinAVR/bin/../lib/gcc/avr/3.4.3/specs
Configured with: ../gcc-3.4.3/configure --prefix=m:/WinAVR --build=mingw32
--host=mingw32 --target=avr --enable-langu
Thread model: single
gcc version 3.4.3

C:\Documents and Settings\es2005>avr-ld -v
GNU ld version 2.15 + coff-avr-patch (20030831)

C:\Documents and Settings\es2005>uisp --version
uisp version 20050207
(C) 1997-1999 Uros Platise, 2000-2003 Marek Michalkiewicz
uisp is free software, covered by the GNU General Public License.
You are welcome to change it and/or distribute copies of it under
the conditions of the GNU General Public License.

C:\Documents and Settings\es2005>avrdude -v
avrdude: Version 4.4.0cvs

Copyright (c) 2000-2004 Brian Dean, http://www.bdmicro.com/
System wide configuration file is "C:\WinAVR\bin\avrdude.conf"

avrdude: no programmer has been specified on the command line or the config file
Specify a programmer using the -c option and try again

Solution 11 You should see the following output:

avrdude -help
Usage: avrdude [options]
Options:

-p <partno> Required. Specify AVR device.
-b <baudrate> Override RS-232 baud rate.
-B <bitclock> Specify JTAG/STK500v2 bit clock period (us).
-C <config-file> Specify location of configuration file.
-c <programmer> Specify programmer type.
-D Disable auto erase for flash memory
-P <port> Specify connection port.
-F Override invalid signature check.
-e Perform a chip erase.
-U <memtype>:r|w|v:<filename>[:format]

Memory operation specification.
Multiple -U options are allowed, each request
is performed in the order specified.

-n Do not write anything to the device.
-V Do not verify.
-u Disable safemode, default when running from a script.
-s Silent safemode operation, will not ask you if

fuses should be changed back.
-t Enter terminal mode.
-E <exitspec>[,<exitspec>] List programmer exit specifications.
-y Count # erase cycles in EEPROM.
-Y <number> Initialize erase cycle # in EEPROM.
-v Verbose output. -v -v for more.
-q Quell progress output. -q -q for less.
-? Display this usage.

avrdude project: <URL:http://savannah.nongnu.org/projects/avrdude>

Solution 12 You should see the following output:

avrdude: AVR device initialized and ready to accept instructions
Reading | ## | 100% 0.02s
avrdude: Device signature = 0x1e9702
avrdude: safemode: Fuses OK
avrdude done. Thank you.

http://ccrma.stanford.edu/courses/250a/docs/avrlib/main.html

64 APPENDIX B. SOLUTIONS

Solution 13 You should see the following output:

avrdude: AVR device initialized and ready to accept instructions
Reading | ## | 100% 0.02s
avrdude: Device signature = 0x1e9702
avrdude: erasing chip
avrdude: safemode: Fuses OK
avrdude done. Thank you.

You should see the following output:

avrdude: AVR device initialized and ready to accept instructions
Reading | ## | 100% 0.02s
avrdude: Device signature = 0x1e9702
avrdude: reading input file "bt-cmd.btnode3.hex"
avrdude: writing flash (66182 bytes):
Writing | ## | 100% 14.47s
avrdude: 66182 bytes of flash written
avrdude: safemode: Fuses OK
avrdude done. Thank you.

Solution 14 Not yet.

Solution 15 You should see the following output:

avrdude: AVR device initialized and ready to accept instructions
Reading | ## | 100% 0.02s
avrdude: Device signature = 0x1e9702
avrdude: NOTE: FLASH memory has been specified, an erase cycle will be performed

To disable this feature, specify the -D option.
avrdude: erasing chip
avrdude: reading input file "uart-echo.btnode3.hex"
avrdude: writing flash (13410 bytes):
Writing | ## | 100% 2.95s
avrdude: 13410 bytes of flash written
avrdude: verifying flash memory against uart-echo.btnode3.hex:
avrdude: load data flash data from input file uart-echo.btnode3.hex:
avrdude: input file uart-echo.btnode3.hex contains 13410 bytes
avrdude: reading on-chip flash data:
Reading | ## | 100% 1.48s
avrdude: verifying ...
avrdude: 13410 bytes of flash verified
avrdude: safemode: Fuses OK
avrdude done. Thank you.

Solution 16 You should see the following output:

make btnode3
echo "#define PROGRAM_VERSION "\""20060405-1501"\" > program_version.tmp
mv -f program_version.tmp program_version.h
avr-gcc -c -mmcu=atmega128 -Os -Wall -Werror -Wstrict-prototypes -Wa,-ahlms=bt-cmd.btnode3.lst -D__HARVARD_ARCH__
-D__BTNODE3__ -DUSE_USART0 -DUART0_READMULTIBYTE -DUART0_NO_SW_FLOWCONTROL -DUSE_USART1 -DUART1_READMULTIBYTE
-DUART1_NO_SW_FLOWCONTROL -I../..//btnode/include -I../..//../nut/include bt-cmd.c -o bt-cmd.btnode3.o
avr-gcc bt-cmd.btnode3.o ../..//lib/btnode3/nutinit.o -Wl,--start-group -L../..//lib/btnode3 -mmcu=atmega128
-Wl,--defsym=main=0,-Map=bt-cmd.btnode3.map,--cref -L../..//lib/btnode3 -lnutos -lnutdev -lnutarch -lnutcrt
-lbt -lhardware -lcm -leepromdb -lsuart -lled -lcc -ldebug -lmhop -lsync -lutils -lterminal -lsupport -lcdist
-Wl,--end-group -o bt-cmd.btnode3.elf
avr-size bt-cmd.btnode3.elf

text data bss dec hex filename
60416 4062 2814 67292 106dc bt-cmd.btnode3.elf

avr-objcopy -O ihex bt-cmd.btnode3.elf bt-cmd.btnode3.hex
rm bt-cmd.btnode3.elf

You should see the following output:

make btnode3 upload
make: Nothing to be done for ‘btnode3’.
make burn.btnode3
make[1]: Entering directory ‘/home/beutel/eclipse/btnut/app/bt-cmd’
avrdude -pm128 -cavrispv2 -Pusb -s -U flash:w:bt-cmd.btnode3.hex:i

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.01s

65

avrdude: Device signature = 0x1e9702
avrdude: NOTE: FLASH memory has been specified, an erase cycle will be performed

To disable this feature, specify the -D option.
avrdude: erasing chip
avrdude: reading input file "bt-cmd.btnode3.hex"
avrdude: writing flash (64478 bytes):

Writing | ## | 100% 5.19s

avrdude: 64478 bytes of flash written
avrdude: verifying flash memory against bt-cmd.btnode3.hex:
avrdude: load data flash data from input file bt-cmd.btnode3.hex:
avrdude: input file bt-cmd.btnode3.hex contains 64478 bytes
avrdude: reading on-chip flash data:

Reading | ## | 100% 4.17s

avrdude: verifying ...
avrdude: 64478 bytes of flash verified

avrdude: safemode: Fuses OK

avrdude done. Thank you.

make[1]: Leaving directory ‘/home/beutel/eclipse/btnut/app/bt-cmd’

Solution 17 Not yet.

Solution 18 Not yet.

Solution 19 Not yet.

Solution 20 Not yet.

Chapter 3 – Device Level Programming

Solution 21 The blue LED is connected to pin 0 of port C. Since port C is the upper byte of the address
bus, the value 0x0100 on the address bus switches on the blue LED. Since the function write_led shifts the
argument value by 8 bits, you have to use write_led(0x01) to switch on the blue LED.

Solution 22 – Sample Code

#include <hardware/btn-hardware.h> // btn_hardware_init

void shortpause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {
}

}

void pause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {

shortpause(0xffff);
}

}

void write_led(u_char value)
{

volatile u_char * pointer;
u_char dummy;

pointer = (u_char *) (((u_short)value) << 8);
dummy = *pointer;

sbi(PORTB, 5);

66 APPENDIX B. SOLUTIONS

asm volatile ("nop" ::);
cbi(PORTB, 5);

}

int main(void)
{

int toggle = 0;

sbi(DDRB, 5);
while (1) {

if (toggle) {
toggle = 0;
write_led(0x01);

}
else {

toggle = 1;
write_led(0x00);

}
pause(12);

}
return 0;

}

Solution 23 I have implemented the pause with the help of a shortpause() function (see solution to exercise
20). Calling pause(12) resulted in a pause of approximately 1 second. Calling pause(12) runs the loop in
shortpause 12 · 0xffff = 768′000 times. Now we look at the list file:

...
13 shortpause:
14 /* prologue: frame size=0 */
15 /* prologue end (size=0) */
16 0000 20E0 ldi r18,lo8(0)
17 0002 30E0 ldi r19,hi8(0)
18 0004 2817 cp r18,r24
19 0006 3907 cpc r19,r25
20 0008 28F4 brsh .L8
21 .L6:
22 000a 2F5F subi r18,lo8(-(1))
23 000c 3F4F sbci r19,hi8(-(1))
24 000e 2817 cp r18,r24
25 0010 3907 cpc r19,r25
26 0012 D8F3 brlo .L6
27 .L8:
28 0014 0895 ret
29 /* epilogue: frame size=0 */
30 /* epilogue: noreturn */
31 /* epilogue end (size=0) */
32 /* function shortpause size 11 (11) */
33 .size shortpause, .-shortpause
...

The loop is coded in the lines 21 to 26, line 21 is not an instruction, thus the loop is 5 instructions long. So
in 1 second, approximately 768′000 ·5 = 3′930′000 instructions are executed. Assuming that every instruction
takes one cycle results in a clock frequency of 3.9 MHz.

Looking at the instruction set summary in the atmega manual tells us that the brlo takes two cycles, thus
we get to a clock frequency of 768′000 · 6 Hz = 4.7MHz.

The clock frequency is actually 7.3 MHz. The error of course results from the extremely inaccurate measure-
ment of ’one second’.

Solution 24 – Sample Code

#include <hardware/btn-hardware.h>

// COMPUTE ADC values corresponding to 1 and 2 Volts:
// If battery voltage is 1V, the BAT_SENSE signal is 0.5V.
// The reference voltage is 3.3V and corresponds to the ADC value 1024.
// Therefore 0.5V corresponds to an ADC value of 1024/3.3*0.5=155.
// A battery voltage is 2V, ADC value is 310.
#define BAT_1_VOLT 155
#define BAT_2_VOLT 310

67

void shortpause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {
}

}

void pause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {

shortpause(0xffff);
}

}

void write_led(u_char value)
{

volatile u_char * pointer;
u_char dummy;

pointer = (u_char *) (((u_short)value) << 8);
dummy = *pointer;

sbi(PORTB, 5);
asm volatile ("nop" ::);
cbi(PORTB, 5);

}

int get_battery_voltage(void) {

int result;

ADMUX |= 1<<MUX0;
ADMUX |= 1<<MUX1;
ADCSRA |= 1<<ADPS0;
ADCSRA |= 1<<ADPS1;
ADCSRA |= 1<<ADPS2;
ADCSRA |= 1<<ADEN;
ADCSRA |= 1<<ADSC;
while (ADCSRA & (1<<ADSC)) ;

result = ADCL;
result |= ADCH << 8;

return result;
}

int main(void)
{

int battery_voltage = 0;

DDRB |= 1<<DDB5;
while (1) {

battery_voltage = get_battery_voltage();

if (battery_voltage < BAT_1_VOLT) {
write_led(0x02);

}
else {

if (battery_voltage < BAT_2_VOLT) {
write_led(0x04);

}
else {

write_led(0x08);
}

}
pause(12);
write_led(0x01);
pause(12);

}
return 0;

}

Solution 25 – Sample Code

#include <hardware/btn-hardware.h>
#include <dev/irqreg.h>

68 APPENDIX B. SOLUTIONS

// COMPUTE ADC values corresponding to 1 and 2 Volts:
// If battery voltage is 1V, the BAT_SENSE signal is 0.5V.
// The reference voltage is 3.3V and corresponds to the ADC value 1024.
// Therefore 0.5V corresponds to an ADC value of 1024/3.3*0.5=155.
// A battery voltage is 2V, ADC value is 310.
#define BAT_1_VOLT 155
#define BAT_2_VOLT 310

void shortpause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {
}

}

void pause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {

shortpause(0xffff);
}

}

void write_led(u_char value)
{

volatile u_char * pointer;
u_char dummy;

pointer = (u_char *) (((u_short)value) << 8);
dummy = *pointer;

sbi(PORTB, 5);
asm volatile ("nop" ::);
cbi(PORTB, 5);

}

int get_battery_volt(void) {

int result;

ADMUX |= 1<<MUX0;
ADMUX |= 1<<MUX1;
ADCSRA |= 1<<ADPS0;
ADCSRA |= 1<<ADPS1;
ADCSRA |= 1<<ADPS2;
ADCSRA |= 1<<ADEN;
ADCSRA |= 1<<ADSC;
while (ADCSRA & (1<<ADSC)) ;

result = ADCL;
result |= ADCH << 8;

return result;
}

static void timer3IRQ(void *arg)
{

int battery_voltage = get_battery_volt();

if (battery_voltage < BAT_1_VOLT) {
write_led(0x02);

}
else {

if (battery_voltage < BAT_2_VOLT) {
write_led(0x04);

}
else {

write_led(0x08);
}

}
// Reset the counter to non-zero value, see expl. in main routine.
TCNT3H = 0x21;
TCNT3L = 0x64;

}

int main(void)
{

int toggle = 0;

DDRB |= 1<<DDB5;

69

NutRegisterIrqHandler(&sig_OVERFLOW3, timer3IRQ, 0);
// 16 bit timer without prescaler (clock frequency 7.3MHz)
// -> overflows once every 0xffff*(1/7.3E6)s=9ms
// For an overflow every 2s, prescaler should be
// 2s/9ms = 223. The closest value is 256 (see table on page 135).
// This gives an overflow every 2.3s. This could be adjusted by
// setting the counter value to 0.3/2.3*0xfffff = 0x2164 after
// every overflow, thus at the end of the timer interrupt routine
TCCR3B |= 1<<CS32;
ETIMSK |= 1<<TOIE3;

while (1) {
if (toggle) {

toggle = 0;
write_led(0x01);

}
else {

toggle = 1;
write_led(0x00);

}
pause(10);

}

return 0;
}

Solution 26 – Sample Code

#include <hardware/btn-hardware.h>
#include <dev/irqreg.h>

// COMPUTE ADC values corresponding to 1 and 2 Volts:
// If battery voltage is 1V, the BAT_SENSE signal is 0.5V.
// The reference voltage is 3.3V and corresponds to the ADC value 1024.
// Therefore 0.5V corresponds to an ADC value of 1024/3.3*0.5=155.
// A battery voltage is 2V, ADC value is 310.
#define BAT_1_VOLT 155
#define BAT_2_VOLT 310

void shortpause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {
}

}

void pause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {

shortpause(0xffff);
}

}

void write_led(u_char value)
{

volatile u_char * pointer;
u_char dummy;

pointer = (u_char *) (((u_short)value) << 8);
dummy = *pointer;

sbi(PORTB, 5);
asm volatile ("nop" ::);
cbi(PORTB, 5);

}

int get_battery_volt(void) {

int result;

ADMUX |= 1<<MUX0;
ADMUX |= 1<<MUX1;
ADCSRA |= 1<<ADPS0;
ADCSRA |= 1<<ADPS1;
ADCSRA |= 1<<ADPS2;
ADCSRA |= 1<<ADEN;
ADCSRA |= 1<<ADSC;

70 APPENDIX B. SOLUTIONS

while (ADCSRA & (1<<ADSC)) ;

result = ADCL;
result |= ADCH << 8;

return result;
}

static void timer3IRQ(void *arg)
{

int battery_voltage = get_battery_volt();

if (battery_voltage < BAT_1_VOLT) {
write_led(0x02);

}
else {

if (battery_voltage < BAT_2_VOLT) {
write_led(0x04);

}
else {

write_led(0x08);
}

}
}

int main(void)
{

int toggle = 0;

DDRB |= 1<<DDB5;

NutRegisterIrqHandler(&sig_OUTPUT_COMPARE3A, timer3IRQ, 0);
// 16 bit timer without prescaler (clock frequency 7.3MHz)
// -> overflows once every 0xffff*(1/7.3E6)s=9ms
// For an overflow every 2s, prescaler should be
// 2s/9ms = 223. The closest value is 256 (see table on page 135).
// This gives an overflow every 2.3s.
TCCR3B |= 1<<CS32;
// To get an interrupt every 2s, the interrupt should be triggered
// when the counter reaches 2/2.3*0xffff=0xde9a.
OCR3AH = 0xde;
OCR3AL = 0x9a;
// Enable this interrupt
ETIMSK |= 1<<OCIE3A;

// THE ADVANTAGE of the CTC over the solution for ex. 23 is that the interval
// can be adjusted more precisely. In the previous mode you loose the time
// that elapses between the moment the interrupt is triggered and the moment
// the timer registers are reset.

while (1) {
if (toggle) {

toggle = 0;
write_led(0x01);

}
else {

toggle = 1;
write_led(0x00);

}
pause(10);

}

return 0;
}

Solution 27 In my case, i measured an execution time of 0.25 ms without printf() and 1.2 ms with
printf().

Solution 28 Not yet.

Solution 29 – Sample Code

#include <hardware/btn-hardware.h>
#include <dev/irqreg.h>
#include <stdio.h> // freopen

71

#include <io.h> // _ioctl
#include <dev/usartavr.h> // NutRegisterDevice, APP_UART, UART_SETSPEED
#include <sys/timer.h>

// COMPUTE ADC values corresponding to 1 and 2 Volts:
// If battery voltage is 1V, the BAT_SENSE signal is 0.5V.
// The reference voltage is 3.3V and corresponds to the ADC value 1024.
// Therefore 0.5V corresponds to an ADC value of 1024/3.3*0.5=155.
// A battery voltage is 2V, ADC value is 310.
#define BAT_1_VOLT 155
#define BAT_2_VOLT 310

int adc_done = 0;
int battery_voltage = 0;

void shortpause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {
}

}

void pause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {

shortpause(0xffff);
}

}

void write_led(u_char value)
{

volatile u_char * pointer;
u_char dummy;

pointer = (u_char *) (((u_short)value) << 8);
dummy = *pointer;

sbi(PORTB, 5);
asm volatile ("nop" ::);
cbi(PORTB, 5);

}

int get_battery_volt(void)
{

int result;

ADMUX |= 1<<MUX0;
ADMUX |= 1<<MUX1;
ADCSRA |= 1<<ADPS0;
ADCSRA |= 1<<ADPS1;
ADCSRA |= 1<<ADPS2;
ADCSRA |= 1<<ADEN;
ADCSRA |= 1<<ADSC;
while (ADCSRA & (1<<ADSC)) ;

result = ADCL;
result |= ADCH << 8;

return result;
}

static void timer3IRQ(void *arg)
{

battery_voltage = get_battery_volt();

if (battery_voltage < BAT_1_VOLT) {
write_led(0x02);

}
else {

if (battery_voltage < BAT_2_VOLT) {
write_led(0x04);

}
else {

write_led(0x08);
}

}
// Reset the counter to non-zero value, see expl. in main routine.
TCNT3H = 0x21;
TCNT3L = 0x64;
adc_done = 1;

72 APPENDIX B. SOLUTIONS

}

int init_stdout(void)
{

u_long baud = 57600;

sbi(PORTD, 2);
NutRegisterDevice(&APP_UART, 0, 0);
freopen(APP_UART.dev_name, "r+", stdout);
_ioctl(_fileno(stdout), UART_SETSPEED, &baud);
return 1;

}

int main(void)
{

init_stdout();
printf("Hello world!\n");
DDRB |= 1<<DDB5;

NutRegisterIrqHandler(&sig_OVERFLOW3, timer3IRQ, 0);
// 16 bit timer without prescaler (clock frequency 7.3MHz)
// -> overflows once every 0xffff*(1/7.3E6)s=9ms
// For an overflow every 2s, prescaler should be
// 2s/9ms = 223. The closest value is 256 (see table on page 135).
// This gives an overflow every 2.3s. This could be adjusted by
// setting the counter value to 0.3/2.3*0xfffff = 0x2164 after
// every overflow, thus at the end of the timer interrupt routine
TCCR3B |= 1<<CS32;
ETIMSK |= 1<<TOIE3;

while (1) {
while (adc_done == 0) {

pause(1);
}
printf("Battery voltage is %d units\n",battery_voltage);
adc_done = 0;

}

return 0;
}

Solution 30 There are a few different cases to consider here:

battery_voltage_millivolt = (3300*battery_voltage_raw)/512;

This does not work. in my case battery_voltage_raw is 380 units, thus 3300 · 380 = 1254000 is far larger
than what can be put in an int (16 bit) with a maximal value of +32767. Signed int is no better, the maximum
is +65535. In contrast a signed long overflows at +2147483647, which is sufficient for this case.

battery_voltage_millivolt = 3300*(battery_voltage_raw/512);

This also does not work, because 380/512 = 0 (its integers!).

Here is the final solution:

int battery_voltage_raw, battery_voltage_millivolt;
battery_voltage_millivolt = (3300*(long)battery_voltage_raw)/512;

Solution 31 – Sample Code

#include <hardware/btn-hardware.h>
#include <dev/irqreg.h>
#include <stdio.h> // freopen
#include <io.h> // _ioctl
#include <dev/usartavr.h> // NutRegisterDevice, APP_UART, UART_SETSPEED
#include <sys/timer.h>

// COMPUTE ADC values corresponding to 1 and 2 Volts:
// If battery voltage is 1V, the BAT_SENSE signal is 0.5V.
// The reference voltage is 3.3V and corresponds to the ADC value 1024.
// Therefore 0.5V corresponds to an ADC value of 1024/3.3*0.5=155.
// A battery voltage is 2V, ADC value is 310.
#define BAT_1_VOLT 155
#define BAT_2_VOLT 310

73

int adc_done = 0;
int battery_voltage = 0;

u_char temp_sreg;

void shortpause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {
}

}

void pause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {

shortpause(0xffff);
}

}

void write_led(u_char value)
{

volatile u_char * pointer;
u_char dummy;

pointer = (u_char *) (((u_short)value) << 8);
dummy = *pointer;

sbi(PORTB, 5);
asm volatile ("nop" ::);
cbi(PORTB, 5);

}

int get_battery_volt(void) {

int result;

ADMUX |= 1<<MUX0;
ADMUX |= 1<<MUX1;

ADCSRA |= 1<<ADPS0;
ADCSRA |= 1<<ADPS1;
ADCSRA |= 1<<ADPS2;

ADCSRA |= 1<<ADEN;
ADCSRA |= 1<<ADSC;
while (ADCSRA & (1<<ADSC)) ;

result = ADCL;
result |= ADCH << 8;

return result;
}

static void timer3IRQ(void *arg)
{

battery_voltage = get_battery_volt();

if (battery_voltage < BAT_1_VOLT) {
write_led(0x02);

}
else {

if (battery_voltage < BAT_2_VOLT) {
write_led(0x04);

}
else {

write_led(0x08);
}

}
// Reset the counter to non-zero value, see expl. in main routine.
TCNT3H = 0x21;
TCNT3L = 0x64;
adc_done = 1;

}

int init_stdout(void)
{

u_long baud = 57600;

sbi(PORTD, 2);
NutRegisterDevice(&APP_UART, 0, 0);

74 APPENDIX B. SOLUTIONS

freopen(APP_UART.dev_name, "r+", stdout);
_ioctl(_fileno(stdout), UART_SETSPEED, &baud);
return 1;

}

void EnterCritical(void)
{

temp_sreg = SREG;
cli();

}

void ExitCritical(void)
{

SREG = temp_sreg;
// an explicit sei(); is not necessary, since the I flag is
// already set if it had been before the previous EnterCritical();

}

int main(void)
{

int battery_voltage_volt;
init_stdout();
printf("Hello world!\n");
DDRB |= 1<<DDB5;

NutRegisterIrqHandler(&sig_OVERFLOW3, timer3IRQ, 0);
// 16 bit timer without prescaler (clock frequency 7.3MHz)
// -> overflows once every 0xffff*(1/7.3E6)s=9ms
// For an overflow every 2s, prescaler should be
// 2s/9ms = 223. The closest value is 256 (see table on page 135).
// This gives an overflow every 2.3s. This could be adjusted by
// setting the counter value to 0.3/2.3*0xfffff = 0x2164 after
// every overflow, thus at the end of the timer interrupt routine
TCCR3B |= 1<<CS32;
ETIMSK |= 1<<TOIE3;

EnterCritical();
while (1) {

while (adc_done == 0) { //adc_done is shared
ExitCritical();
// pause is not necessary
EnterCritical();

}
battery_voltage_volt = (3300*(long)battery_voltage)/512; //battery_voltage is shared
printf("Battery voltage is %d millivolts\n",battery_voltage_volt); //battery_voltage is shared
adc_done = 0; //adc_done is shared

}
ExitCritical();

return 0;
}

Solution 32 In line 7, the value for the LEDs is put on the address bus. It is assumed that it remains there
until the latch is disabled in line 11. This is not the case if between lines 7 and 11 an interrupt occurs. Thus
an EnterCritical() should be inserted before line 7 and an ExitCritical() after line 11.

01 void write_led(u_char value)
02 {
03 volatile u_char * pointer;
04 u_char dummy;
05
06 pointer = (u_char *) (((u_short)value) << 8);
07 dummy = *pointer;
08
09 sbi(PORTB, 5);
10 asm volatile ("nop" ::);
11 cbi(PORTB, 5);
12 }

Chapter 4 – Programming with Threads

Solution 33 – Sample Code

75

#include <sys/thread.h>
#include <hardware/btn-hardware.h>
#include <led/btn-led.h>

THREAD(my_thread, arg)
{

for (;;) {
btn_led_clear(LED0);
btn_led_set(LED1);
NutThreadYield(); // second yield to add (then both LEDs are on)

}
}

int main(void)
{

// hardware init
btn_hardware_init();
btn_led_init(0);

NutThreadCreate("my_thread",my_thread,0,192);
for (;;) {

btn_led_clear(LED1);
btn_led_set(LED0);
NutThreadYield(); // first yield to add (then only red LED is on)

}
return 0;

}

Solution 34 The output is:

my_thread is alive
main is alive
main is alive
my_thread is alive
my_thread is alive
main is alive
main is alive
my_thread is alive
my_thread is alive
...

Sample Code

#include <sys/thread.h>
#include <sys/timer.h>
#include <hardware/btn-hardware.h>
#include <led/btn-led.h>
#include <stdio.h> // freopen
#include <io.h> // _ioctl
#include <dev/usartavr.h> // NutRegisterDevice, APP_UART, UART_SETSPEED

int init_stdout(void)
{

u_long baud = 57600;

sbi(PORTD, 2);
NutRegisterDevice(&APP_UART, 0, 0);
freopen(APP_UART.dev_name, "r+", stdout);
_ioctl(_fileno(stdout), UART_SETSPEED, &baud);
return 1;

}

THREAD(my_thread, arg)
{

for (;;) {
printf("my_thread is alive\n");
NutSleep(1000);

}
}

int main(void)
{

// hardware init
btn_hardware_init();
btn_led_init(0);

init_stdout();

76 APPENDIX B. SOLUTIONS

NutThreadCreate("my_thread",my_thread,0,192);
for (;;) {

printf("main is alive\n");
NutSleep(1000);

}
return 0;

}

Solution 35 The output is:

my_thread is alive
main is alive
my_thread is alive
main is alive
my_thread is alive
main is alive
my_thread is alive
main is alive
my_thread is alive
main is alive
...

You would expect for both exercises the same output, that of exercise 33. The reason for the deviating behavior
is that the mechanism that wakes up threads after a sleep is buggy:

1. NutSleep puts the threads in the sleep queue, AFTER all threads of higher or equal priority.

2. When threads are woken up, the threads are put in the run queue, BEFORE all threads of lower or
equal priority.

Thus if two threads have the same priority and are woken up at the same time, their order gets reversed.
The probelm does not occur when the threads have different priorities or are woken up at different times.

Both threads are woken up at the same time, because NutSleep has a granularity of approximately 64 millisec-
onds. We have seen in the previous chapter that a printf (with such a short string) takes about 1 millisecond,
thus both threads go to sleep and are woken up in the same 64 milliseconds time slot.

Sample Code

#include <sys/thread.h>
#include <sys/timer.h>
#include <hardware/btn-hardware.h>
#include <led/btn-led.h>
#include <stdio.h> // freopen
#include <io.h> // _ioctl
#include <dev/usartavr.h> // NutRegisterDevice, APP_UART, UART_SETSPEED

int init_stdout(void)
{

u_long baud = 57600;

sbi(PORTD, 2);
NutRegisterDevice(&APP_UART, 0, 0);
freopen(APP_UART.dev_name, "r+", stdout);
_ioctl(_fileno(stdout), UART_SETSPEED, &baud);
return 1;

}

THREAD(my_thread, arg)
{

NutThreadSetPriority(20);
for (;;) {

printf("my_thread is alive\n");
NutSleep(1000);

}
}

int main(void)
{

// hardware init
btn_hardware_init();
btn_led_init(0);

77

init_stdout();

NutThreadCreate("my_thread",my_thread,0,192);
for (;;) {

printf("main is alive\n");
NutSleep(1000);

}
return 0;

}

Solution 36 The ouptut received is:

MAIN IS ALIVE
MAIN IS ALis alive
my_thread IVE
MAIN IS ALIVE
MAIN IS ALIVE
MAIN IS is alive
my_thread ALIVE
MAIN IS ALIVis alive
my_thread E
MAIN IS ALIVE
MAIN IS ALIVE
MAIN IS ALis alive
my_thread IVE
MAIN IS ALIVE
MAIN IS ALIVE
MAIN IS is alive
...

Thus both threads run and print to the terminal in an uncoordinated fashion.

Why do both threads run, even though there is no NutThreadYield() or NutSleep() in the code?

The reason is that printf() copies the string in a buffer, which is later put on the UART by an interrupt
service routine (UART TX empty interrupt). If the buffer is filled quickly, it becomes full. When the buffer
is full, printf() implicitely does a NutThreadYield. Therefore you should be very careful about protecting
data that is shared by multiple threads when using printf().

Sample Code

#include <stdio.h>
#include <dev/usartavr.h>
#include <sys/thread.h>
#include <sys/timer.h>
#include <sys/tracer.h>
#include <hardware/btn-hardware.h>
#include <sys/osdebug.h>

#include <terminal/btn-terminal.h>

int init_stdout(void)
{

u_long baud = 57600;

sbi(PORTD, 2);
NutRegisterDevice(&APP_UART, 0, 0);
freopen(APP_UART.dev_name, "r+", stdout);
_ioctl(_fileno(stdout), UART_SETSPEED, &baud);
return 1;

}

THREAD(my_thread, arg)
{

int sleeptime = *(int*)arg;
for (;;) {

printf("%s is alive, will sleep for %d seconds\n",runningThread->td_name,sleeptime);
NutSleep((u_long)1000*sleeptime);

}
}

void create(u_char * arg)
{

static int sleeptime = 1;
char name[20];
int val;
val = sscanf(arg,"%s",name);

78 APPENDIX B. SOLUTIONS

if (val==1) {
printf("Create a thread with name %s and sleeptime %d\n",name,sleeptime);
if (0 == NutThreadCreate(name,my_thread,&sleeptime,292)) {

printf("FAILED!\n");
}
else {

printf("SUCCESFUL!\n");
sleeptime++;

}
}

}

int main(void)
{

// hardware init
btn_hardware_init();

init_stdout();

btn_terminal_init(stdout, "[bt-cmd@btnode]£");
btn_terminal_register_cmd("create",create);
btn_terminal_run(BTN_TERMINAL_NOFORK, 0);
return 0;

}

Solution 37 – Sample Code

#include <stdio.h>
#include <dev/usartavr.h>
#include <sys/thread.h>
#include <sys/timer.h>
#include <sys/tracer.h>
#include <hardware/btn-hardware.h>
#include <sys/osdebug.h>

#include <terminal/btn-terminal.h>

int init_stdout(void)
{

u_long baud = 57600;

sbi(PORTD, 2);
NutRegisterDevice(&APP_UART, 0, 0);
freopen(APP_UART.dev_name, "r+", stdout);
_ioctl(_fileno(stdout), UART_SETSPEED, &baud);
return 1;

}

THREAD(my_thread, arg)
{

for (;;) {
printf("%s is alive\n",runningThread->td_name);
NutSleep(1000);

}
}

void create(char * arg)
{

char name[20];
int val;
// strange behavior here: typing "create name" does not work, but "create name " does!?
val = sscanf(arg,"%s",name);
if (val==1) {

printf("Create a thread with name %s\n",name);
if (0 == NutThreadCreate(name,my_thread,0,292)) {

printf("FAILED!\n");
}
else {

printf("SUCCESFUL!\n");
}

}
}

int main(void)
{

// hardware init
btn_hardware_init();

init_stdout();

79

btn_terminal_init(stdout, "[bt-cmd@btnode]$");
btn_terminal_register_cmd("create",create);
btn_terminal_run(BTN_TERMINAL_NOFORK, 0);
return 0;

}

Solution 38 – Sample Code

#include <stdio.h>
#include <dev/usartavr.h>
#include <sys/thread.h>
#include <sys/timer.h>
#include <sys/tracer.h>
#include <hardware/btn-hardware.h>
#include <sys/osdebug.h>

#include <terminal/btn-terminal.h>

int init_stdout(void)
{

u_long baud = 57600;

sbi(PORTD, 2);
NutRegisterDevice(&APP_UART, 0, 0);
freopen(APP_UART.dev_name, "r+", stdout);
_ioctl(_fileno(stdout), UART_SETSPEED, &baud);
return 1;

}

THREAD(my_thread, arg)
{

int sleeptime = *(int*)arg;
for (;;) {

printf("%s is alive, will sleep for %d seconds\n",runningThread->td_name,sleeptime);
NutSleep((u_long)1000*sleeptime);

}
}

void create(u_char * arg)
{

static int sleeptime = 1;
char name[20];
int val;
val = sscanf(arg,"%s",name);
if (val==1) {

printf("Create a thread with name %s and sleeptime %d\n",name,sleeptime);
if (0 == NutThreadCreate(name,my_thread,&sleeptime,292)) {

printf("FAILED!\n");
}
else {

printf("SUCCESFUL!\n");
sleeptime++;

}
}

}

int main(void)
{

// hardware init
btn_hardware_init();

init_stdout();

btn_terminal_init(stdout, "[bt-cmd@btnode]$");
btn_terminal_register_cmd("create",create);
btn_terminal_run(BTN_TERMINAL_NOFORK, 0);
return 0;

}

Solution 39 – Sample Code

#include <stdio.h>
#include <dev/usartavr.h>
#include <sys/thread.h>
#include <sys/timer.h>

80 APPENDIX B. SOLUTIONS

#include <sys/tracer.h>
#include <hardware/btn-hardware.h>
#include <sys/osdebug.h>
#include <terminal/nut-cmds.h>

#include <terminal/btn-terminal.h>

int init_stdout(void)
{

u_long baud = 57600;

sbi(PORTD, 2);
NutRegisterDevice(&APP_UART, 0, 0);
freopen(APP_UART.dev_name, "r+", stdout);
_ioctl(_fileno(stdout), UART_SETSPEED, &baud);
return 1;

}

THREAD(my_thread, arg)
{
// IF THE variable dummy_str is initialized AND USED, more stack is used
// char dummy_str[20];

int sleeptime = *(int*)arg;
// sprintf(dummy_str,"hello world\n");

for (;;) {
printf("%s is alive, will sleep for %d seconds\n",runningThread->td_name,sleeptime);
NutSleep(1000*sleeptime);

}
}

void create(u_char * arg)
{

static int sleeptime = 1;
int stacksize;
char name[20];
int val;
val = sscanf(arg,"%s%d",name,&stacksize);
if (val==2) {

printf("Create a thread with name %s and sleeptime %d\n",name,sleeptime);
if (0 == NutThreadCreate(name,my_thread,&sleeptime,stacksize)) {

printf("FAILED!\n");
}
else {

printf("SUCCESFUL!\n");
sleeptime++;

}
}

}

int main(void)
{

// hardware init
btn_hardware_init();

init_stdout();

btn_terminal_init(stdout, "[bt-cmd@btnode]$");
btn_terminal_register_cmd("create",create);
nut_cmds_register_cmds();
btn_terminal_run(BTN_TERMINAL_NOFORK, 0);
return 0;

}

Solution 40 – Sample Code

#include <stdio.h>
#include <dev/usartavr.h>
#include <sys/thread.h>
#include <sys/timer.h>
#include <sys/tracer.h>
#include <sys/event.h>
#include <hardware/btn-hardware.h>
#include <led/btn-led.h>

HANDLE event;

int init_stdout(void)
{

u_long baud = 57600;

81

sbi(PORTD, 2);
NutRegisterDevice(&APP_UART, 0, 0);
freopen(APP_UART.dev_name, "r+", stdout);
_ioctl(_fileno(stdout), UART_SETSPEED, &baud);
return 1;

}

THREAD(my_thread, arg)
{

int count = 0;
for (;;) {

NutEventWait(&event, NUT_WAIT_INFINITE);
count++;
printf("myThread has received event no. %d\n",count);

}
}

int main(void)
{

init_stdout();
NutEventPost(&event);
printf("main posts an event\n");
NutEventPost(&event);
printf("main posts an event\n");
NutThreadCreate("myThread",my_thread,0,192);
printf("main enters endless loop\n");
for (;;)

NutThreadYield();
return 0;

}

Solution 41 – Sample Code

#include <stdio.h>
#include <dev/usartavr.h>
#include <sys/thread.h>
#include <sys/timer.h>
#include <sys/tracer.h>
#include <sys/event.h>
#include <hardware/btn-hardware.h>
#include <led/btn-led.h>
#include <string.h>

HANDLE event;

void shortpause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {
}

}

void pause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {

shortpause(0xffff);
}

}

int init_stdout(void)
{

u_long baud = 57600;

sbi(PORTD, 2);
NutRegisterDevice(&APP_UART, 0, 0);
freopen(APP_UART.dev_name, "r+", stdout);
_ioctl(_fileno(stdout), UART_SETSPEED, &baud);
return 1;

}

THREAD(my_thread, arg)
{

int count = 0;
if (strncmp("A",runningThread->td_name,1)==0) {

// NutThreadSetPriority(10);
}
for (;;) {

82 APPENDIX B. SOLUTIONS

NutEventWait(&event, NUT_WAIT_INFINITE);
count++;
printf("Thread %s has received event no. %d\n",runningThread->td_name,count);
pause(12);

}
}

int main(void)
{

int count = 7;
init_stdout();
NutThreadCreate("A",my_thread,0,192);
NutThreadCreate("B",my_thread,0,192);
while (count > 0) {

NutEventPost(&event);
// printf("main posts an event\n");

count--;
}
printf("main enters endless loop\n");
pause(12);
for (;;)

NutThreadYield();
return 0;

}

Solution 42 The ouptut received is:

main posts an event
main posts an event
main enters endless loop
myThread has received event no. 1

myThread receives only 1 event, even though main had posted an event twice before starting myThread. Thus
we see that the event-queue remembers that an event was posted when no one waits for it, but it does not
remember how many events have been posted. The implementation of the event-queues is so that the event-
queue enters the ’signaled’ state when an event is posted and nobody waits for it, but there is no counter of
such events.

Sample Code

#include <stdio.h>
#include <dev/usartavr.h>
#include <sys/thread.h>
#include <sys/timer.h>
#include <sys/tracer.h>
#include <sys/event.h>
#include <hardware/btn-hardware.h>
#include <led/btn-led.h>

HANDLE event;

int init_stdout(void)
{

u_long baud = 57600;

sbi(PORTD, 2);
NutRegisterDevice(&APP_UART, 0, 0);
freopen(APP_UART.dev_name, "r+", stdout);
_ioctl(_fileno(stdout), UART_SETSPEED, &baud);
return 1;

}

THREAD(my_thread, arg)
{

int count = 0;
for (;;) {

NutEventWait(&event, NUT_WAIT_INFINITE);
count++;
printf("myThread has received event no. %d\n",count);

}
}

int main(void)
{

init_stdout();
NutEventPost(&event);

83

printf("main posts an event\n");
NutEventPost(&event);
printf("main posts an event\n");
NutThreadCreate("myThread",my_thread,0,192);
printf("main enters endless loop\n");
for (;;)

NutThreadYield();
return 0;

}

Solution 43 The ouptut received is:

hread A has received event no. 1
Thread B has received event no. 1
Thread A has received event no. 2
Thread B has received event no. 2
Thread A has received event no. 3
Thread B has received event no. 3
main enters endless loop
Thread A has received event no. 4

Thus we see that every event is received ONLY by one thread, even though two threads are waiting. Since
both threads have the same priority, they are served in turns.

When line 80 (NutThreadSetPriority) is uncommented, then the output is:

Thread A has received event no. 1
Thread A has received event no. 2
Thread A has received event no. 3
Thread A has received event no. 4
Thread A has received event no. 5
Thread A has received event no. 6
Thread A has received event no. 7
main enters endless loop

Thus we see that thread priorities DO play a role.

Note that the calls to the pause function are a quick hack that leads to a readable terminal output (remember
that printf implicitely does a NutThreadYield, see exercise 34).

Sample Code

#include <stdio.h>
#include <dev/usartavr.h>
#include <sys/thread.h>
#include <sys/timer.h>
#include <sys/tracer.h>
#include <sys/event.h>
#include <hardware/btn-hardware.h>
#include <led/btn-led.h>
#include <string.h>

HANDLE event;

void shortpause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {
}

}

void pause(u_short duration)
{

u_short i;
for (i=0;i<duration;i++) {

shortpause(0xffff);
}

}

int init_stdout(void)
{

u_long baud = 57600;

sbi(PORTD, 2);
NutRegisterDevice(&APP_UART, 0, 0);
freopen(APP_UART.dev_name, "r+", stdout);

84 APPENDIX B. SOLUTIONS

_ioctl(_fileno(stdout), UART_SETSPEED, &baud);
return 1;

}

THREAD(my_thread, arg)
{

int count = 0;
if (strncmp("A",runningThread->td_name,1)==0) {

// NutThreadSetPriority(10);
}
for (;;) {

NutEventWait(&event, NUT_WAIT_INFINITE);
count++;
printf("Thread %s has received event no. %d\n",runningThread->td_name,count);
pause(12);

}
}

int main(void)
{

int count = 7;
init_stdout();
NutThreadCreate("A",my_thread,0,192);
NutThreadCreate("B",my_thread,0,192);
while (count > 0) {

NutEventPost(&event);
// printf("main posts an event\n");

count--;
}
printf("main enters endless loop\n");
pause(12);
for (;;)

NutThreadYield();
return 0;

}

Chapter 5 – Embedded Debugging

Solution 44 Not yet.

Solution 45 Not yet.

Solution 46 Not yet.

Solution 47 Not yet.

Solution 48 Not yet.

Solution 49 – Sample Code

#include <io.h>
#include <stdio.h>
#include <dev/usartavr.h>
#include <sys/thread.h>
#include <sys/timer.h>
#include <sys/tracer.h>
#include <hardware/btn-hardware.h>
#include <led/btn-led.h>
#include <terminal/btn-terminal.h>

int init_stdout(void)
{

u_long baud = 57600;
sbi(PORTD, 2);
NutRegisterDevice(&APP_UART, 0, 0);
freopen(APP_UART.dev_name, "r+", stdout);
_ioctl(_fileno(stdout), UART_SETSPEED, &baud);
return 1;

}

85

THREAD(ledthread, arg)
{

for (;;) {
btn_led_clear(LED1);
btn_led_set(LED0);

NutSleep(500);
btn_led_clear(LED0);

btn_led_set(LED1);
NutSleep(500);

}
}

int main(void)
{

// hardware init
btn_hardware_init();
btn_led_init(0);
init_stdout();
NutThreadCreate("LedThr",ledthread,0,192);
btn_terminal_init(stdout, "[bt-cmd@btnode]$");
btn_terminal_register_cmd("trace",NutTraceTerminal);
btn_terminal_run(BTN_TERMINAL_NOFORK, 0);

return 0;
}

Solution 50 Not yet.

Solution 51 Not yet.

Solution 52 Not yet.

Chapter 6 – Communication using Bluetooth

Solution 53 The Bluetooth device address can be found on a label attached to the BTnode (e.g.
00:04:3F:00:00:4B) and consists of 6 bytes.

Solution 54 struct bt_hci_pkt_cmd pkt; //
pkt.type=0x01; //HCI command packet
pkt.payload[0]=0x01; //first byte of OpCode
pkt.payload[1]=0x04; //second byte of OpCode
pkt.payload[2]=0x05; //total length of parameters
pkt.payload[3]=0x33; //GIAC
pkt.payload[4]=0x8b; //GIAC
pkt.payload[5]=0x9e; //GIAC
pkt.payload[6]=0x05; //inquiry length 5*1.28s = 6.4 seconds
pkt.payload[7]=0x05; //maximum number of devices

Solution 55 – Sample Code

// send an inquiry command ...
// and use the Btstack thread to receice the answers
#include <sys/tracer.h>
#include <hardware/btn-hardware.h>
#include <terminal/btn-terminal.h>
#include <stdio.h> // freopen
#include <dev/usartavr.h> // NutRegisterDevice, APP_UART, UART_SETSPEED
#include <led/btn-led.h> // needed! (together with btn_led_init(0);), maybe a bug ???
#include <bt/bt_hci_dispatch.h> // for the setWaitQueue command
#include <sys/event.h> // for NutEventWait and NUT_WAIT_INFINITE
#include <bt/bt_hci_cmds.h> // for sending hci commands

86 APPENDIX B. SOLUTIONS

#define HCI_COMMAND_DATA_PACKET 0x01
#define HCI_OGF_LINK_CONTROL 0x01
#define HCI_OCF_LC_INQUIRY 0x01
#define BT_HCI_HANDLE_INVALID 0xFFFF

struct btstack* stack;

void init_stdout(void) {
u_long baud = 57600;
btn_hardware_init();
NutRegisterDevice(&APP_UART, 0, 0);
freopen(APP_UART.dev_name, "r+", stdout);
_ioctl(_fileno(stdout), UART_SETSPEED, &baud);
}

//print a single bluetooth device address to the terminal
void print_bt_addr(bt_addr_t addr) {

printf("%.2x:%.2x:%.2x:%.2x:%.2x:%.2x", addr[5],addr[4],addr[3],addr[2],addr[1],addr[0]);
}

//print the number of found devices and their addresses
void print_inq_result(struct bt_hci_cmd_response wcmd) {

int i;
printf("Devices: %li\n", wcmd.response);
if (wcmd.response<0) {

wcmd.response=0;
} else {

printf("Device bt_addr \n");
}
for (i=0; i<wcmd.response; i++) {

printf("[%d]: ", i);
print_bt_addr((((struct bt_hci_inquiry_result*)(wcmd.ptr)) + i)->bdaddr);
printf(" \n");

}
}

void inquiry (char* arg){

//**************** packet construction******************************

struct bt_hci_pkt_cmd pkt;

pkt.type=HCI_COMMAND_DATA_PACKET;
pkt.payload[0]=HCI_OCF_LC_INQUIRY;
pkt.payload[1]=HCI_OGF_LINK_CONTROL<<2;
//cmd length = 5 bytes
pkt.payload[2]=0x05;
//General Inquiry Access Code (GIAC)
pkt.payload[3]=0x33;
pkt.payload[4]=0x8b;
pkt.payload[5]=0x9e;
// waiting time for the inquiry to complete
// ----> 5 * 1.28 s = 6.4 s
pkt.payload[6]=0x05;
// maximum number of responding devices
pkt.payload[7]=0x05;

//*************** prepare and register cmd_response-structure********

struct bt_hci_cmd_response wcmd;

//array for the storage of the answers of max. 10 devices
struct bt_hci_inquiry_result inquiry_result[10];

//initialize the cmd_response-structure
wcmd.ogfocf= ((HCI_OCF_LC_INQUIRY<<8)|(HCI_OGF_LINK_CONTROL<<2));
wcmd.cmd_handle= BT_HCI_HANDLE_INVALID;
wcmd.response=0;
wcmd.ptr= &inquiry_result;
wcmd.block=0;

//register the wcmd in the WaitQueue of the running stack
_bt_hci_setWaitQueue(stack,&wcmd);

//*************** send packet, wait and readout the results********

_bt_hci_send_pkt(stack,(u_char*)&pkt);
printf("Starting inquiry\n");
NutEventWait(&(wcmd.block),NUT_WAIT_INFINITE);
printf("Inquiry done! \n");

87

print_inq_result(wcmd);
}

int main(void) {
btn_hardware_init();
btn_led_init(0);
init_stdout();

// bluetooth module on (takes a while)
btn_hardware_bt_on();

// Start the stack and let the initialization begin
stack = bt_hci_init(&BT_UART);

btn_terminal_init(stdout, "[es200X]$");
btn_terminal_register_cmd("inquiry", inquiry);
btn_terminal_register_cmd("trace",NutTraceTerminal);
btn_terminal_run(BTN_TERMINAL_NOFORK, 0);
return 0;
}

Solution 56 You can clearly identify a CommandStatusEvent, several InquiryResultEvents as well as a final
InquiryCompleteEvent.

Solution 57 Not yet.

Solution 58 – Sample Code

// sending a string message within an acl-packet
/*
* Copyright (C) 2000-2006 by ETH Zurich
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY ETH ZURICH AND CONTRIBUTORS
* ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ETH ZURICH
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* For additional information see http://www.btnode.ethz.ch/
*
* $Id: ch-6-ex-58.c,v 1.3 2006/05/19 15:02:08 cmoser79 Exp $
*
*/

/*!
* $Log: ch-6-ex-58.c,v $
* Revision 1.3 2006/05/19 15:02:08 cmoser79
* final changes to chapter 6 (Clemens)
*
* Revision 1.43 2006/04/06 08:52:10 kevmarti
* removed ’log_cmds_register_cmds()’ function (registering is now done in ’log_cmds_init()’)
*
* Revision 1.42 2006/04/05 12:56:21 kevmarti
* adjusted call to ’log_init()’
*

88 APPENDIX B. SOLUTIONS

* Revision 1.41 2006/04/05 12:47:37 kevmarti
* Added call to log_cmds_init()
*
* Revision 1.40 2006/04/05 10:44:22 kevmarti
* terminal cmds for logging moved from ’debug/logging.c’ to ’terminal/log-cmds.c’
*
* Revision 1.39 2006/04/05 10:05:48 beutel
* *** empty log message ***
*
* Revision 1.38 2006/04/05 05:29:36 dyerm
* fixed reading of bt version and features for the fancy header
*
* Revision 1.37 2006/03/29 01:15:00 olereinhardt
*
* Changed signedness of strings in order to compile with avr-gcc 4.0.2
*
* Revision 1.36 2006/03/24 14:44:50 dyerm
* removed obsolete bt_acl_com
*
* Revision 1.35 2006/03/23 17:13:57 beutel
* added version, features and name to bt-cmd
*
* Revision 1.34 2006/03/23 17:12:39 beutel
* added version, features and name to bt-cmd
*
* Revision 1.33 2006/03/23 07:22:24 dyerm
* Merged changes from multihop_merge branch. See individual changes on
* multihop_merge branch. See Changelog for summary of changes.
*
*/

/**
* \example bt-cmd/bt-cmd.c
*
* \date 2004/06/18
*
* \author Martin Hinz <btnode@hinz.ch>
* \author Jan Beutel <j.beutel@ieee.org>
*
* Example application to show the use of the bt stack and the simple but
* powerful terminal interface.
*/

#include <stdio.h>
#include <dev/usartavr.h>
#include <sys/heap.h>
#include <sys/timer.h>

#include <hardware/btn-hardware.h>

#include <bt/bt_hci_cmds.h>

#include <terminal/btn-terminal.h>
#include <terminal/btn-cmds.h>
#include <terminal/bt-cmds.h>
#include <terminal/nut-cmds.h>
#include <terminal/log-cmds.h>

#include <led/btn-led.h>
#include <debug/logging.h>

#include "program_version.h"
#define CVS_VERSION "$Id: ch-6-ex-58.c,v 1.3 2006/05/19 15:02:08 cmoser79 Exp $"

struct btstack* stack;
extern u_char _bt_hci_debug_uart;

//sending a text message on a certain channel with a certain connection handle
void transmit (char* arg){

int handle, channel,i;
u_char message[20];
//set empty message
for (i=0;i<=19;i++)

message[i]=’ ’;

//dont separate single words in "message" with spaces,
//BUT: leave space after end of "message",
//(otherwise bluetooth module may be re-booted)
sscanf(arg, "%u%u%s", &handle, &channel, message);

89

//define a packet: 5 bytes for hci-packet-header,
//4 bytes for L2CAP-packet header and 20 bytes payload
u_char hci_acl_pkt[29];

//the following bytes are set by the bt_hci_send_acl_pkt-function:
//hci_acl_pkt[0] type
//hci_acl_pkt[1] con handle
//hci_acl_pkt[2] con handle + flags
//hci_acl_pkt[3] flags + data length
//hci_acl_pkt[4] data length
hci_acl_pkt[5]=(u_char)(20 & 0xFF);
hci_acl_pkt[6]=(u_char)((20>>8) & 0xFF);
hci_acl_pkt[7]=(u_char)(channel & 0xFF);
hci_acl_pkt[8]=(u_char)((channel>>8) & 0xFF);

//attach the string message
for(i=0;i<=18;i++)

hci_acl_pkt[9+i]=message[i];

//... and send the packet
bt_hci_send_acl_pkt(stack,handle,2,0,24,(struct bt_hci_pkt_acl*)(hci_acl_pkt));

printf("Message (%s) sent with handle %d, channel %d \n",message,handle,channel);
}

struct bt_hci_pkt_acl* receive(void *arg, struct bt_hci_pkt_acl *pkt, bt_hci_con_handle_t con_handle, u_char pb_flag, u_char bc_flag, u_short len, u_long t_arrive)
{

u_char* l2cap_hdr = pkt->payload;
u_char* l2cap_data;
u_short chan_id;

chan_id = l2cap_hdr[2] | (l2cap_hdr[3] << 8);

l2cap_data = &l2cap_hdr[4];

printf("message received on channel %d: %s\n", chan_id, l2cap_data);
return pkt;

}

/**
* main function that initializes the hardware, led, terminal, bluetooth
* and acl communication stack and registers some predefined commands.
* Use tab-tab to see the registered commands once the program is running.
*/

int main(void)
{

u_char acl_pkt[120];

// serial baud rate
u_long baud = 57600;
u_long cpu_crystal;
u_long nut_tick_freq;

// hardware init
btn_hardware_init();
btn_led_init(1);

// init app uart
NutRegisterDevice(&APP_UART, 0, 0);
freopen(APP_UART.dev_name, "r+", stdout);
_ioctl(_fileno(stdout), UART_SETSPEED, &baud);

// logging
log_init();

// hello world!
printf("\n# --");
printf("\n# Welcome to BTnut (c) 2006 ETH Zurich\n");
printf("# bt-cmd program version: %s\n", PROGRAM_VERSION);
printf("# %s\n", CVS_VERSION);
cpu_crystal = NutGetCpuClock();
nut_tick_freq = NutGetTickClock();
printf("# running @ %u.%04u MHz, NutFreq=%ul Hz\n",

(int) (cpu_crystal / 1000000UL), (int) ((cpu_crystal - (cpu_crystal / 1000000UL) * 1000000UL) / 100),
(int) nut_tick_freq);

printf("# ---");
printf("\nbooting Bluetooth module...\n");

// bluetooth module on (takes a while)

90 APPENDIX B. SOLUTIONS

btn_hardware_bt_on();

// verbose debug of all hci information
//_bt_hci_debug_uart = 1;

// Start the stack and let the initialization begin
stack = bt_hci_init(&BT_UART);

bt_hci_write_default_link_policy_settings(stack, BT_HCI_SYNC,
BT_HCI_LINK_POLICY_ROLE_SWITCH |
BT_HCI_LINK_POLICY_HOLD_MODE |
BT_HCI_LINK_POLICY_SNIFF_MODE |
BT_HCI_LINK_POLICY_PARK_STATE);

bt_addr_t addr;
struct bt_hci_local_version_result version;
u_char features[8];
u_char _bt_cmds_name[30];

bt_hci_read_bt_addr(stack, BT_HCI_SYNC, addr);
printf("Bluetooth MAC address: %.2x:%.2x:%.2x:%.2x:%.2x:%.2x\n", addr[5], addr[4], addr[3], addr[2], addr[1], addr[0]);
bt_hci_read_local_version_information(stack, BT_HCI_SYNC, &version);
printf("HCI version: %X %.4X %X %.4X %.4X\n", version.hciversion,

version.hcirevision, version.lmpversion, version.manufacturername, version.lmpsubversion);
bt_hci_read_local_supported_features(stack, BT_HCI_SYNC, features);
printf("LMP features: %.2X %.2X %.2X %.2X %.2X %.2X %.2X %.2X\n",

features[0], features[1], features[2], features[3], features[4], features[5], features[6], features[7]);
bt_hci_read_local_name(stack, BT_HCI_SYNC, _bt_cmds_name, sizeof(_bt_cmds_name));
printf("Local name: ’%s’\n", _bt_cmds_name);

// give hint
printf("hit tab twice for a list of commands\n\r");

// terminal init
char prompt[20];
sprintf(prompt, "[bt-cmd@%.2x:%.2x]$", addr[1], addr[0]);
btn_terminal_init(stdout, prompt);
bt_cmds_init(stack);
bt_cmds_register_cmds();
btn_cmds_register_cmds();
nut_cmds_register_cmds();
log_cmds_init(stdout);

bt_hci_register_acl_cb(stack, receive, (struct bt_hci_pkt_acl*)acl_pkt, NULL);

btn_terminal_register_cmd("transmit",transmit);
// terminal mode
btn_terminal_run(BTN_TERMINAL_NOFORK, 0);

return 0;
}

Solution 59 Not yet.

Solution 60 Not yet.

Chapter 7 – Interfacing to Handheld Devices

Solution 61 Individual solution.

Solution 62 Not yet.

Solution 63 See next solution.

Solution 64 See next solution.

Solution 65 See next solution.

91

Solution 66 – Sample Code

//solution to all programming exercises of chapter 7
#include <stdio.h>
#include <string.h>
#include <io.h>
#include <stdlib.h>
#include <dev/usart.h>
#include <dev/usartavr.h>
#include <bt/bt_hci_cmds.h>
#include <bt/bt_l2cap.h>
#include <bt/bt_rfcomm.h>
#include <terminal/btn-terminal.h>
#include <terminal/btn-cmds.h>
#include <terminal/bt-cmds.h>
#include <terminal/nut-cmds.h>
#include <terminal/l2cap-cmds.h>
#include <terminal/rfcomm-cmds.h>
#include <led/btn-led.h>
#include <hardware/btn-hardware.h>
#include <sys/timer.h>
#include <string.h>
#include <stdio.h>
#include <debug/toolbox.h>

#include "program_version.h"

#define BT_L2CAP_HCI_PACKET_TYPE (BT_HCI_PACKET_TYPE_DM1 | BT_HCI_PACKET_TYPE_DH1 | \
BT_HCI_PACKET_TYPE_DM3 | BT_HCI_PACKET_TYPE_DH3)

FILE *uart_terminal;
struct btstack* stack;
struct bt_l2cap_stack* l2cap_stack;
struct bt_rfcomm_stack* rfcomm_stack;

#define MIN_CREDITS 10
#define MAX_CREDITS 40

void rcv_cb(u_char dlci, u_char * payload, u_short len, void *arg)
{

u_short idx;
if (len > 0) {

printf("\n");
for (idx = 0; idx < len; idx++)

printf("%c ", payload[idx]);
}

}

void con_cb(u_char dlci, u_char type, void *arg)
{

if (type == BT_RFCOMM_CONNECT) {
printf("RFCOMM Connect on dlci %d...\n", dlci);
bt_rfcomm_send_credits(dlci, MAX_CREDITS - BT_RFCOMM_DEF_CREDITS);

} else {
printf("RFCOMM Disconnect on dlci %d...\n", dlci);

}
}

void line_cb(u_char dlci, u_char flags, void *arg)
{

printf("rfcomm Line status has changed: dlci: %d, flags: %02x\n", dlci, flags);
}

void credit_cb(u_char dlci, u_char credits, void *arg)
{

printf("rfcomm Credits running low for dlci %d. Credits remaining: %d\n", dlci, credits);
printf("rfcomm Send new credits: %d\n", MAX_CREDITS - credits);
bt_rfcomm_send_credits(dlci, MAX_CREDITS - credits);

}

//returns the 7bit ASCII value of a character
int character_value(char character)
{

//Lookup table for 7bit ASCII code
const char alphabet[128] = {’@’, ’@’, ’$’, ’@’, ’@’, ’@’, ’@’, ’@’, ’@’, ’@’, ’\n’, ’@’, ’@’,

’\r’,’@’, ’@’,’@’, ’_’, ’@’, ’@’, ’@’, ’@’, ’@’,’@’, ’@’, ’@’, ’@’,’@’, ’@’, ’@’, ’@’,
’@’,’ ’, ’!’, ’"’, ’#’, ’@’, ’%’, ’&’, ’\’’, ’(’, ’)’,’*’, ’+’, ’,’, ’-’, ’.’, ’/’,
’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’, ’?’, ’@’,
’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’, ’P’, ’Q’,
’R’, ’S’,’T’, ’U’, ’V’, ’W’, ’X’, ’Y’, ’Z’, ’@’, ’@’, ’@’, ’@’, ’@’, ’@’, ’a’,’b’,

92 APPENDIX B. SOLUTIONS

’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’,’p’, ’q’, ’r’, ’s’,
’t’, ’u’, ’v’, ’w’, ’x’, ’y’, ’z’, ’@’, ’@’, ’@’,’@’, ’@’};

int i;

for(i=0;i<128;i++){
if(character == alphabet[i]){

return i;
}

}
return -1; //no valid character

}

//convert binary to integer
int bin2int(char * binary)
{

int i;
int sum = 0;
int length;

length = strlen(binary);
for(i=0;i<length;i++){

if(binary[i] == ’1’){
//sum += (int)pow((double)2,(double)(length-1-i));
sum += 0x01<<(length-1-i);

}
}
return sum;

}

void process_message(char * message_str, char * message)
{

char buffer[8]="\0";
int length;
int i;
int character = -1;
char base[8]="\0";
char carry[8]="\0";
char rdbuffer[8]="\0";

//init
message_str[0] = ’\0’;

length = strlen(message);
if(length<=15){

strcat(message_str, "00000");
} else {

if(length>160){
length = 160;

}
strcat(message_str, "0000");

}
itoa(length, buffer, 16); //convert integer to hex string
strcat(message_str, buffer);

for(i=0;i<=length;i++){
if(i == length){

if(base[0] != ’\0’){
character = bin2int(base);
itoa(character, base, 16);
if(strlen(base)==1){

base[1]=base[0];
base[0]=’0’;
base[2]=’\0’;

}
strcat(message_str, base);

}
break;

}
character = character_value(message[i]);
if(character != -1){

strcpy(buffer,"0000000");
itoa(character, rdbuffer, 2);
strcpy(buffer+7-strlen(rdbuffer), rdbuffer);
if(i != 0 && i%8 !=0){

strncpy(carry, buffer+7-i%8, i%8);
carry[i%8] = ’\0’;
strcat(carry, base);
character = bin2int(carry);
itoa(character, carry, 16);
if(strlen(carry)==1){

carry[1]=carry[0];

93

carry[0]=’0’;
carry[2]=’\0’;

}
strcat(message_str, carry);
strncpy(base, buffer, 7-i%8);
base[7-i%8] = ’\0’;

} else{
strcpy(base, buffer);

}
} else{

//ERROR: Not a valid character
}

}
}

char * process_phone_number(char * number_str, char * number)
{

char buffer[3] = "\0";
int length;

//init
number_str[0]=’\0’;

if(*number == ’+’){ //skip ’+’ character in phone number
number++;

}
length = strlen(number);
if(length > 15){

//invalid phone number
return number_str;

} else {
itoa(length, buffer, 16); //convert integer to hex string

}
strcat(number_str, buffer);
strcat(number_str,"91");

while(*number != ’\0’ && *(number+1) != ’\0’){
buffer[0] = *(number+1);
buffer[1] = *number;
buffer[2] = ’\0’;
strcat(number_str,buffer);
number += 2;

}
if(length % 2 != 0){

buffer[0] = ’f’;
buffer[1] = *number;
buffer[2] = ’\0’;
strcat(number_str,buffer);

}
return number_str;

}

void send_sms_pdu_mode(char * number, char * message)
{

char pdu[172]="\0";
char buffer[13]="\0";
int length;
char rdbuffer[4]="\0";
char number_str[19] = "\0";
char message_str[147] = "\0";

//message header
strcat(pdu,"0025000");

//process phone number
if(process_phone_number(number_str, number)[0] == ’\0’){

//invalid phone number
return;

}
strcat(pdu, number_str);

//process message
process_message(message_str, message);
strcat(pdu, message_str);

//pdu length
length = strlen(pdu)/2-1;

//line delimiter
strcat(pdu, "\x1a");

94 APPENDIX B. SOLUTIONS

//at commands
strcpy(buffer,"at+cmgs=");
itoa(length, rdbuffer, 10);
strcat(buffer, rdbuffer);
strcat(buffer, "\r");
//sms format: pdu
bt_rfcomm_send(2, "at+cmgf=0\r", 10);
NutSleep(1000);
//sms command
bt_rfcomm_send(2, buffer, strlen(buffer));
NutSleep(1000);
//message
bt_rfcomm_send(2, pdu, strlen(pdu));
//insert some delay to receive the send ok message
NutSleep(5000);

}

void send_sms(char* arg)
{

bt_addr_t BTaddr = {0x6d, 0x30, 0xc1, 0x9f, 0x11, 0x00};
unsigned int addr[BD_ADDR_LEN];
int i;
char BTaddress[18] = "\0";
char number[17] = "\0";
char message[161] = "Greetings from the BTnode.";

//interface for Bluetooth address input
printf("\nEnter the Bluetooth address or the name of the sending phone: ");
user_input(stdout, BTaddress, 18);

//extracting the BTaddress
if(sscanf(BTaddress, "%2x:%2x:%2x:%2x:%2x:%2x", &addr[5], &addr[4], &addr[3],
&addr[2], &addr[1], &addr[0]) == 6) {

for (i = 0; i < BD_ADDR_LEN; i++){
BTaddr[i] = (u_char) addr[i];

}
}

//connect
if(bt_rfcomm_start_session(BTaddr, 0, 0)) return;
NutSleep(1000);
if(bt_rfcomm_connect(1, con_cb, rcv_cb, line_cb, credit_cb, 10, NULL)) return;
NutSleep(1000);

//general AT Commands
bt_rfcomm_send(2, "at&f\r", 5);
NutSleep(2000);
bt_rfcomm_send(2, "at+cgmi\r", 8);
NutSleep(1000);
bt_rfcomm_send(2, "at+cgmm\r", 8);
NutSleep(1000);
bt_rfcomm_send(2, "at+cgsn\r", 8);
NutSleep(1000);

//user interface for SMS messaging
printf("\nEnter the phone number of the recipient: ");
user_input(stdout, number, 17);
printf("\nEnter the message: ");
user_input(stdout, message, 161);

//send sms
send_sms_pdu_mode(number, message);

//disconnect
bt_rfcomm_disconnect(2);

}

/**
* main function that initializes the hardware, led, terminal, bluetooth
* and acl communication stack and registers some predefined commands.
* Use tab-tab to see the registered commands once the program is running.
*/

int main(void)
{

// serial baud rate
u_long baud = 57600;

// hardware init
btn_hardware_init();
btn_led_init(1);

95

// init app uart
NutRegisterDevice(&APP_UART, 0, 0);
freopen(APP_UART.dev_name, "r+", stdout);
_ioctl(_fileno(stdout), UART_SETSPEED, &baud);

// hello world!
printf_P(PSTR("\n# --"));
printf_P(PSTR("\n# Welcome to BTnut (c) 2005 ETH Zurich\n"));
printf_P(PSTR("# rfcomm-cmd program version: %s\n"), PROGRAM_VERSION);
printf_P(PSTR("# --"));
printf_P(PSTR("\nbooting bluetooth module... "));

// bluetooth module on (takes a while)
btn_hardware_bt_on();

// Start the stack and let the initialization begin
stack = bt_hci_init(&BT_UART);
bt_hci_write_local_cod(stack, BT_HCI_SYNC, 200);
printf_P(PSTR("ok.\n\r"));

// give hint
printf_P(PSTR("hit tab twice for a list of commands\n\r"));

// terminal init
btn_terminal_init(stdout, "[rfcomm-cmd]$");
bt_cmds_init(stack);

// Start L2CAP and RFCOMM
l2cap_stack = bt_l2cap_init(stack, 8, 8, BT_L2CAP_HCI_PACKET_TYPE);
l2cap_cmds_init(l2cap_stack, 1, BT_L2CAP_MIN_MTU, BT_L2CAP_MTU_DEFAULT);

rfcomm_stack = bt_rfcomm_init(l2cap_stack, BT_RFCOMM_DEF_MFS, 4, 5);
rfcomm_cmds_init();

bt_cmds_register_cmds();
btn_cmds_register_cmds();
nut_cmds_register_cmds();
l2cap_cmds_register_cmds();
rfcomm_cmds_register_cmds();

btn_terminal_register_cmd("sendsms", send_sms);

// terminal mode
btn_terminal_run(BTN_TERMINAL_NOFORK, 0);
return 0;

}

96 APPENDIX B. SOLUTIONS

BIBLIOGRAPHY 97

Bibliography

[1] Atmel. Atmel ATmega128L - 8-Bit AVR Microcontroller with 128k in-System programmable Flash,
November 2004.

[2] ETSI. Technical Specification 100 916 - AT command set for GSM Mobile Equipment, Version 7.7.0,
1998.

[3] Bluetooth Special Interest Group. Specification of the Bluetooth System v.1.2, November 2003.

[4] J.L. Hennessy and D.A. Patterson. Computer organization and design: The hardware/software interface.
Morgan Kaufmann Publishers, San Francisco, CA, 2nd edition, 1997.

[5] Nokia. Support Guide for the Nokia Phones and AT Commands, May 2002.

[6] Sony Ericsson. Developers Guidelines - AT Commands, August 2005.

	Introduction
	The BTnodes and the BTnut System Software
	Intended Audience
	Hard- and Software Requirements
	Reference Documents

	First Steps in BTnode Programming
	Introduction
	Development Tools
	Compilation
	Simulation and Debugging
	Project Management
	Embedded Target Connection
	Documentation Tools

	Notes on the BTnode Hardware Architecture
	BTnut System Software Resources
	First steps in BTnode programming -- Using the avr-gcc toolchain

	Device-Level Programming
	Introduction
	Off-chip resource: Setting and Clearing LEDs
	On-chip resource: The Analog to Digital Converter
	Writing interrupt routines: Hardware Timers
	Protecting shared data and resources

	Programming with Threads
	Introduction
	Creating Threads
	The Terminal
	Events

	Embedded Debugging
	Introduction
	Tools
	Debugging techniques for the BTnode

	AVR Simulation
	The OS-Tracer

	Communication Using Bluetooth
	Introduction
	Discovery of Bluetooth devices
	Creating Connections and Sending Data Packets

	Interfacing to Handheld Devices
	Introduction
	RFCOMM
	AT Commands
	Sending an SMS Message using AT Commands

	Software Versions Used
	Solutions

